On Operator Valued Haar Unitaries and Bipolar Decompositions of R-diagonal Elements

Pub Date : 2024-02-26 DOI:10.1007/s00020-024-02760-z
{"title":"On Operator Valued Haar Unitaries and Bipolar Decompositions of R-diagonal Elements","authors":"","doi":"10.1007/s00020-024-02760-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In the context of operator valued W<span> <span>\\(^*\\)</span> </span>-free probability theory, we study Haar unitaries, R-diagonal elements and circular elements. Several classes of Haar unitaries are differentiated from each other. The term bipolar decomposition is used for the expression of an element as <em>vx</em> where <em>x</em> is self-adjoint and <em>v</em> is a partial isometry, and we study such decompositions of operator valued R-diagonal and circular elements that are free, meaning that <em>v</em> and <em>x</em> are <span> <span>\\(*\\)</span> </span>-free from each other. In particular, we prove, when <span> <span>\\(B={\\textbf{C}}^2\\)</span> </span>, that if a <em>B</em>-valued circular element has a free bipolar decomposition with <em>v</em> unitary, then it has one where <em>v</em> normalizes <em>B</em>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02760-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of operator valued W \(^*\) -free probability theory, we study Haar unitaries, R-diagonal elements and circular elements. Several classes of Haar unitaries are differentiated from each other. The term bipolar decomposition is used for the expression of an element as vx where x is self-adjoint and v is a partial isometry, and we study such decompositions of operator valued R-diagonal and circular elements that are free, meaning that v and x are \(*\) -free from each other. In particular, we prove, when \(B={\textbf{C}}^2\) , that if a B-valued circular element has a free bipolar decomposition with v unitary, then it has one where v normalizes B.

分享
查看原文
论R对角元素的算子值哈尔单元和双极分解
摘要 在无算子值 W (^*\)概率论的背景下,我们研究了哈尔单元、R 对角元素和圆元素。我们将几类 Haar 单元相互区分开来。双极分解这一术语用于表达一个元素为 vx,其中 x 是自共轭的,v 是部分等距的,我们研究了算子值 R 对角元素和圆元素的这种分解,它们是自由的,这意味着 v 和 x 彼此是 \(*\) -free 的。特别是,我们证明,当 \(B={\textbf{C}}^2\) 时,如果一个 B 值圆周元素有一个自由的双极分解,且 v 是单元的,那么它就有一个 v 使 B 正常化的双极分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信