Philip Deline, Henriette Linge, Ludovic Ravanel, Talin Tuestad, Romain Lafite, Fabien Arnaud, Jostein Bakke
{"title":"Mapping of morainic complexes and reconstruction of glacier dynamics north-east of Cook Ice Cap, Kerguelen Archipelago (49°S)","authors":"Philip Deline, Henriette Linge, Ludovic Ravanel, Talin Tuestad, Romain Lafite, Fabien Arnaud, Jostein Bakke","doi":"10.1017/s0954102023000378","DOIUrl":null,"url":null,"abstract":"<p>Due to the limited landmasses in the Southern Hemisphere, we must rely on data from sub-Antarctic islands within the Southern Ocean to record historical climate patterns. Over the past few decades, glaciers throughout the Southern Ocean region have experienced a noticeable retreat, especially in the Kerguelen Archipelago, whose glacial landforms offer valuable insights into long-term climate fluctuations. Our comprehensive glacial geomorphological study conducted in its remote north-western region meticulously examines morainic complexes from smaller cirque glaciers and larger outlet glaciers stemming from the Cook Ice Cap. We mapped these landforms to reconstruct historical glacier extents during the Holocene. The surface area of the three main glaciers had decreased in 1962–1964 by only 35% compared to their maximum extents, whereas surface area changes across 12 time intervals spanning from 1962 to 2019 from aerial and satellite imagery reveal a cumulative reduction of 43.5%. Additionally, we modelled changes in glacier thickness and equilibrium-line altitude for the key glaciers at three distinct stages: 1) their maximum extent before 1962, 2) the early 1960s and 3) 2019. This multifaceted analysis contributes valuable insights into the dynamics of Kerguelen's glaciers and the broader implications for understanding past and ongoing climate dynamics in the Southern Hemisphere.</p>","PeriodicalId":50972,"journal":{"name":"Antarctic Science","volume":"15 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antarctic Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/s0954102023000378","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the limited landmasses in the Southern Hemisphere, we must rely on data from sub-Antarctic islands within the Southern Ocean to record historical climate patterns. Over the past few decades, glaciers throughout the Southern Ocean region have experienced a noticeable retreat, especially in the Kerguelen Archipelago, whose glacial landforms offer valuable insights into long-term climate fluctuations. Our comprehensive glacial geomorphological study conducted in its remote north-western region meticulously examines morainic complexes from smaller cirque glaciers and larger outlet glaciers stemming from the Cook Ice Cap. We mapped these landforms to reconstruct historical glacier extents during the Holocene. The surface area of the three main glaciers had decreased in 1962–1964 by only 35% compared to their maximum extents, whereas surface area changes across 12 time intervals spanning from 1962 to 2019 from aerial and satellite imagery reveal a cumulative reduction of 43.5%. Additionally, we modelled changes in glacier thickness and equilibrium-line altitude for the key glaciers at three distinct stages: 1) their maximum extent before 1962, 2) the early 1960s and 3) 2019. This multifaceted analysis contributes valuable insights into the dynamics of Kerguelen's glaciers and the broader implications for understanding past and ongoing climate dynamics in the Southern Hemisphere.
期刊介绍:
Antarctic Science provides a truly international forum for the broad spread of studies that increasingly characterise scientific research in the Antarctic. Whilst emphasising interdisciplinary work, the journal publishes papers from environmental management to biodiversity, from volcanoes to icebergs, and from oceanography to the upper atmosphere. No other journal covers such a wide range of Antarctic scientific studies. The journal attracts papers from all countries currently undertaking Antarctic research. It publishes both review and data papers with no limits on length, two-page short notes on technical developments and recent discoveries, and book reviews. These, together with an editorial discussing broader aspects of science, provide a rich and varied mixture of items to interest researchers in all areas of science. There are no page charges, or charges for colour, to authors publishing in the Journal. One issue each year is normally devoted to a specific theme or papers from a major meeting.