A physical organic strategy to predict and interpret stabilities of chemical bonds in energetic compounds for the discovery of thermal-resistant properties
{"title":"A physical organic strategy to predict and interpret stabilities of chemical bonds in energetic compounds for the discovery of thermal-resistant properties","authors":"Haitao Liu, Peng Chen, Xin Huang, Xianfeng Wei","doi":"10.1007/s00894-024-05877-5","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>The in-depth understanding about the stability of chemical bonds in energetic compounds plays a central role for molecular design and safety-related evaluations. Most energetic compounds contain nitro as explosophores, and nitro cleavage is fundamental for thermal and mechanical stability. However, the quantum chemistry approach to accurately predict energy and temperature properties related to bond stability is challenging, due to the tradeoff between computational costs and deviations. Herein, the bond orders are proposed as accurate and computational-cost efficient descriptors for predicting the chemical bond stability and thermal-resistant properties. The intrinsic bond strength index (IBSI) demonstrates the best prediction for experimental homolytic bond dissociation energies (<i>R</i><sup>2</sup> > 0.996), which is on par with the results from high-precision quantum chemistry methods. The effects from bond connectivity and steric hindrance hierarchy were analyzed to reveal underlying mechanisms. Additionally, the IBSI descriptors are successfully applied to predict the thermal decomposition temperatures of 24 heat-resistant energetic compounds (<i>R</i><sup>2</sup> = 0.995), thus validating the effectiveness for the prediction and interpretation of chemical bond stability in energetic compounds via a physical organic approach.</p><h3>Methods</h3><p>All DFT calculations were performed with Gaussian 09 software. To investigate the dependence of the method on functionals and basis sets, 9 DFT methods were considered (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/def2-TZVP, M062X/6-31G(d,p), M062X/6-311G(d,p), M062X/def2-TZVP, ωB97XD/6-31G(d,p), ωB97XD/6-311G(d,p), and ωB97XD/def2-TZVP). The bond order descriptors LBO and IBSI are obtained through the bond order analysis module in the Multiwfn software.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":651,"journal":{"name":"Journal of Molecular Modeling","volume":"30 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Modeling","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00894-024-05877-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
The in-depth understanding about the stability of chemical bonds in energetic compounds plays a central role for molecular design and safety-related evaluations. Most energetic compounds contain nitro as explosophores, and nitro cleavage is fundamental for thermal and mechanical stability. However, the quantum chemistry approach to accurately predict energy and temperature properties related to bond stability is challenging, due to the tradeoff between computational costs and deviations. Herein, the bond orders are proposed as accurate and computational-cost efficient descriptors for predicting the chemical bond stability and thermal-resistant properties. The intrinsic bond strength index (IBSI) demonstrates the best prediction for experimental homolytic bond dissociation energies (R2 > 0.996), which is on par with the results from high-precision quantum chemistry methods. The effects from bond connectivity and steric hindrance hierarchy were analyzed to reveal underlying mechanisms. Additionally, the IBSI descriptors are successfully applied to predict the thermal decomposition temperatures of 24 heat-resistant energetic compounds (R2 = 0.995), thus validating the effectiveness for the prediction and interpretation of chemical bond stability in energetic compounds via a physical organic approach.
Methods
All DFT calculations were performed with Gaussian 09 software. To investigate the dependence of the method on functionals and basis sets, 9 DFT methods were considered (B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/def2-TZVP, M062X/6-31G(d,p), M062X/6-311G(d,p), M062X/def2-TZVP, ωB97XD/6-31G(d,p), ωB97XD/6-311G(d,p), and ωB97XD/def2-TZVP). The bond order descriptors LBO and IBSI are obtained through the bond order analysis module in the Multiwfn software.
期刊介绍:
The Journal of Molecular Modeling focuses on "hardcore" modeling, publishing high-quality research and reports. Founded in 1995 as a purely electronic journal, it has adapted its format to include a full-color print edition, and adjusted its aims and scope fit the fast-changing field of molecular modeling, with a particular focus on three-dimensional modeling.
Today, the journal covers all aspects of molecular modeling including life science modeling; materials modeling; new methods; and computational chemistry.
Topics include computer-aided molecular design; rational drug design, de novo ligand design, receptor modeling and docking; cheminformatics, data analysis, visualization and mining; computational medicinal chemistry; homology modeling; simulation of peptides, DNA and other biopolymers; quantitative structure-activity relationships (QSAR) and ADME-modeling; modeling of biological reaction mechanisms; and combined experimental and computational studies in which calculations play a major role.