{"title":"The orthogonal skew model: computationally efficient multivariate skew-normal and skew-t distributions with applications to model-based clustering","authors":"Ryan P. Browne, Jeffrey L. Andrews","doi":"10.1007/s11749-024-00920-2","DOIUrl":null,"url":null,"abstract":"<p>We introduce a parameterization for the multivariate skew normal and skew-<i>t</i> distributions, which enforces an orthogonal structure on the skewness parameter. This approach provides substantial benefits in computational efficiency during parameter estimation, resulting in a model which strikes an excellent balance between flexibility and model-fitting feasibility. We illustrate this primarily through implementing the proposed distributions in a mixture model-based clustering framework. We compare to competing skew distributions via both simulated and real data analyses, reporting both computation time and model-fit metrics.\n</p>","PeriodicalId":51189,"journal":{"name":"Test","volume":"42 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Test","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11749-024-00920-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce a parameterization for the multivariate skew normal and skew-t distributions, which enforces an orthogonal structure on the skewness parameter. This approach provides substantial benefits in computational efficiency during parameter estimation, resulting in a model which strikes an excellent balance between flexibility and model-fitting feasibility. We illustrate this primarily through implementing the proposed distributions in a mixture model-based clustering framework. We compare to competing skew distributions via both simulated and real data analyses, reporting both computation time and model-fit metrics.
期刊介绍:
TEST is an international journal of Statistics and Probability, sponsored by the Spanish Society of Statistics and Operations Research. English is the official language of the journal.
The emphasis of TEST is placed on papers containing original theoretical contributions of direct or potential value in applications. In this respect, the methodological contents are considered to be crucial for the papers published in TEST, but the practical implications of the methodological aspects are also relevant. Original sound manuscripts on either well-established or emerging areas in the scope of the journal are welcome.
One volume is published annually in four issues. In addition to the regular contributions, each issue of TEST contains an invited paper from a world-wide recognized outstanding statistician on an up-to-date challenging topic, including discussions.