Spatiotemporal Observer Design for Predictive Learning of High-Dimensional Data

Tongyi Liang, Han-Xiong Li
{"title":"Spatiotemporal Observer Design for Predictive Learning of High-Dimensional Data","authors":"Tongyi Liang, Han-Xiong Li","doi":"arxiv-2402.15284","DOIUrl":null,"url":null,"abstract":"Although deep learning-based methods have shown great success in\nspatiotemporal predictive learning, the framework of those models is designed\nmainly by intuition. How to make spatiotemporal forecasting with theoretical\nguarantees is still a challenging issue. In this work, we tackle this problem\nby applying domain knowledge from the dynamical system to the framework design\nof deep learning models. An observer theory-guided deep learning architecture,\ncalled Spatiotemporal Observer, is designed for predictive learning of high\ndimensional data. The characteristics of the proposed framework are twofold:\nfirstly, it provides the generalization error bound and convergence guarantee\nfor spatiotemporal prediction; secondly, dynamical regularization is introduced\nto enable the model to learn system dynamics better during training. Further\nexperimental results show that this framework could capture the spatiotemporal\ndynamics and make accurate predictions in both one-step-ahead and\nmulti-step-ahead forecasting scenarios.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"242 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.15284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although deep learning-based methods have shown great success in spatiotemporal predictive learning, the framework of those models is designed mainly by intuition. How to make spatiotemporal forecasting with theoretical guarantees is still a challenging issue. In this work, we tackle this problem by applying domain knowledge from the dynamical system to the framework design of deep learning models. An observer theory-guided deep learning architecture, called Spatiotemporal Observer, is designed for predictive learning of high dimensional data. The characteristics of the proposed framework are twofold: firstly, it provides the generalization error bound and convergence guarantee for spatiotemporal prediction; secondly, dynamical regularization is introduced to enable the model to learn system dynamics better during training. Further experimental results show that this framework could capture the spatiotemporal dynamics and make accurate predictions in both one-step-ahead and multi-step-ahead forecasting scenarios.
高维数据预测学习的时空观测器设计
尽管基于深度学习的方法在时空预测学习方面取得了巨大成功,但这些模型的框架主要是凭直觉设计的。如何进行有理论保证的时空预测仍是一个具有挑战性的问题。在这项工作中,我们通过将动力系统的领域知识应用于深度学习模型的框架设计来解决这个问题。我们设计了一种观察者理论指导下的深度学习架构,称为 "时空观察者"(Spatotemporal Observer),用于高维数据的预测学习。提出的框架有两个特点:首先,它为时空预测提供了泛化误差约束和收敛保证;其次,引入了动态正则化,使模型在训练过程中更好地学习系统动态。进一步的实验结果表明,该框架可以捕捉时空动态,并在提前一步和提前多步预测的情况下做出准确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信