V. N. Zakharov, E. V. Ul’yanova, O. N. Malinnikova
{"title":"Contribution of Mineral Impurities to Coalbed Methane Accumulation and Retention","authors":"V. N. Zakharov, E. V. Ul’yanova, O. N. Malinnikova","doi":"10.1134/s1062739123050010","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The implemented research shows that coalbed gas content in face area is proportional to pyrite content of coal, calculated with respect to iron and sulfur contents determined on X-ray fluorescent spectrometer. These results confirm the hypothesis on methane formation in coal during recovery of carbon oxides in the presence of iron-bearing minerals, in particular, pyrite, and water, and explain different contents of methane in the same rank coals. The obtained inverse proportion between the coalbed gas content in the face area and the sorption surface of coal allows supposing that methane accumulations concentrate mainly in the \"solid solution\" and in the closed porosity, i.e. in the coal structure. For this reason, it is more difficult and longer to recover such methane from coal than methane accumulated in open pores and fractures, which quickly leaves coal in face area.</p>","PeriodicalId":16358,"journal":{"name":"Journal of Mining Science","volume":"142 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s1062739123050010","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0
Abstract
The implemented research shows that coalbed gas content in face area is proportional to pyrite content of coal, calculated with respect to iron and sulfur contents determined on X-ray fluorescent spectrometer. These results confirm the hypothesis on methane formation in coal during recovery of carbon oxides in the presence of iron-bearing minerals, in particular, pyrite, and water, and explain different contents of methane in the same rank coals. The obtained inverse proportion between the coalbed gas content in the face area and the sorption surface of coal allows supposing that methane accumulations concentrate mainly in the "solid solution" and in the closed porosity, i.e. in the coal structure. For this reason, it is more difficult and longer to recover such methane from coal than methane accumulated in open pores and fractures, which quickly leaves coal in face area.
期刊介绍:
The Journal reflects the current trends of development in fundamental and applied mining sciences. It publishes original articles on geomechanics and geoinformation science, investigation of relationships between global geodynamic processes and man-induced disasters, physical and mathematical modeling of rheological and wave processes in multiphase structural geological media, rock failure, analysis and synthesis of mechanisms, automatic machines, and robots, science of mining machines, creation of resource-saving and ecologically safe technologies of mineral mining, mine aerology and mine thermal physics, coal seam degassing, mechanisms for origination of spontaneous fires and methods for their extinction, mineral dressing, and bowel exploitation.