{"title":"Ramsey Numbers and Graph Parameters","authors":"Vadim Lozin","doi":"10.1007/s00373-024-02755-y","DOIUrl":null,"url":null,"abstract":"<p>According to Ramsey’s Theorem, for any natural <i>p</i> and <i>q</i> there is a minimum number <i>R</i>(<i>p</i>, <i>q</i>) such that every graph with at least <i>R</i>(<i>p</i>, <i>q</i>) vertices has either a clique of size <i>p</i> or an independent set of size <i>q</i>. In the present paper, we study Ramsey numbers <i>R</i>(<i>p</i>, <i>q</i>) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of <i>p</i> and <i>q</i>. However, the exact values of <i>R</i>(<i>p</i>, <i>q</i>) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of <i>R</i>(<i>p</i>, <i>q</i>) is lower-bounded by <span>\\((p-1)(q-1)+1\\)</span>. This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant <i>c</i> such that <span>\\(R(p,q)=(p-1)(q-1)+1\\)</span> for all <span>\\(p,q\\ge c\\)</span> in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"183 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02755-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
According to Ramsey’s Theorem, for any natural p and q there is a minimum number R(p, q) such that every graph with at least R(p, q) vertices has either a clique of size p or an independent set of size q. In the present paper, we study Ramsey numbers R(p, q) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of p and q. However, the exact values of R(p, q) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of R(p, q) is lower-bounded by \((p-1)(q-1)+1\). This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant c such that \(R(p,q)=(p-1)(q-1)+1\) for all \(p,q\ge c\) in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.