Ramsey Numbers and Graph Parameters

Pub Date : 2024-02-25 DOI:10.1007/s00373-024-02755-y
Vadim Lozin
{"title":"Ramsey Numbers and Graph Parameters","authors":"Vadim Lozin","doi":"10.1007/s00373-024-02755-y","DOIUrl":null,"url":null,"abstract":"<p>According to Ramsey’s Theorem, for any natural <i>p</i> and <i>q</i> there is a minimum number <i>R</i>(<i>p</i>, <i>q</i>) such that every graph with at least <i>R</i>(<i>p</i>, <i>q</i>) vertices has either a clique of size <i>p</i> or an independent set of size <i>q</i>. In the present paper, we study Ramsey numbers <i>R</i>(<i>p</i>, <i>q</i>) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of <i>p</i> and <i>q</i>. However, the exact values of <i>R</i>(<i>p</i>, <i>q</i>) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of <i>R</i>(<i>p</i>, <i>q</i>) is lower-bounded by <span>\\((p-1)(q-1)+1\\)</span>. This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant <i>c</i> such that <span>\\(R(p,q)=(p-1)(q-1)+1\\)</span> for all <span>\\(p,q\\ge c\\)</span> in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02755-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to Ramsey’s Theorem, for any natural p and q there is a minimum number R(pq) such that every graph with at least R(pq) vertices has either a clique of size p or an independent set of size q. In the present paper, we study Ramsey numbers R(pq) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of p and q. However, the exact values of R(pq) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of R(pq) is lower-bounded by \((p-1)(q-1)+1\). This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant c such that \(R(p,q)=(p-1)(q-1)+1\) for all \(p,q\ge c\) in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.

Abstract Image

分享
查看原文
拉姆齐数字和图形参数
根据拉姆齐定理,对于任意自然数 p 和 q,都有一个最小数 R(p,q),使得每个至少有 R(p,q) 个顶点的图都有一个大小为 p 的簇或一个大小为 q 的独立集。众所周知,对于同色数有界的图,拉姆齐数是由 p 和 q 的线性函数上界的。然而,R(p, q) 的精确值只适用于同色数最多为 2 的图类。本文中,我们确定了共色数最多为 3 的图类的拉姆齐数的精确值。我们还知道,对于分裂度无约束的图类,R(p, q) 的值下界为 \((p-1)(q-1)+1/\)。这个下界与完美图及其所有无界分割性子类的上界重合。如果存在一个常数 c,使得该类中的所有 \(R(p,q)=(p-1)(q-1)+1\) 都是 Ramsey-perfect,我们就称该类为 Ramsey-perfect。在本文中,我们确定了一些拉姆齐完美类,它们并不是完美图的子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信