{"title":"Ramsey Numbers and Graph Parameters","authors":"Vadim Lozin","doi":"10.1007/s00373-024-02755-y","DOIUrl":null,"url":null,"abstract":"<p>According to Ramsey’s Theorem, for any natural <i>p</i> and <i>q</i> there is a minimum number <i>R</i>(<i>p</i>, <i>q</i>) such that every graph with at least <i>R</i>(<i>p</i>, <i>q</i>) vertices has either a clique of size <i>p</i> or an independent set of size <i>q</i>. In the present paper, we study Ramsey numbers <i>R</i>(<i>p</i>, <i>q</i>) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of <i>p</i> and <i>q</i>. However, the exact values of <i>R</i>(<i>p</i>, <i>q</i>) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of <i>R</i>(<i>p</i>, <i>q</i>) is lower-bounded by <span>\\((p-1)(q-1)+1\\)</span>. This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant <i>c</i> such that <span>\\(R(p,q)=(p-1)(q-1)+1\\)</span> for all <span>\\(p,q\\ge c\\)</span> in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02755-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
According to Ramsey’s Theorem, for any natural p and q there is a minimum number R(p, q) such that every graph with at least R(p, q) vertices has either a clique of size p or an independent set of size q. In the present paper, we study Ramsey numbers R(p, q) for graphs in special classes. It is known that for graphs of bounded co-chromatic number Ramsey numbers are upper-bounded by a linear function of p and q. However, the exact values of R(p, q) are known only for classes of graphs of co-chromatic number at most 2. In this paper, we determine the exact values of Ramsey numbers for classes of graphs of co-chromatic number at most 3. It is also known that for classes of graphs of unbounded splitness the value of R(p, q) is lower-bounded by \((p-1)(q-1)+1\). This lower bound coincides with the upper bound for perfect graphs and for all their subclasses of unbounded splitness. We call a class Ramsey-perfect if there is a constant c such that \(R(p,q)=(p-1)(q-1)+1\) for all \(p,q\ge c\) in this class. In the present paper, we identify a number of Ramsey-perfect classes which are not subclasses of perfect graphs.