Hukun Wang, Jun Hu, Zhiguo Xia, Chengwei Liu, Bin Yang, Bing Chen, Linbin Zhang, Xinrong Wang
{"title":"Mechanical properties and damage evolution characteristics of composite rock mass with prefabricated fractures","authors":"Hukun Wang, Jun Hu, Zhiguo Xia, Chengwei Liu, Bin Yang, Bing Chen, Linbin Zhang, Xinrong Wang","doi":"10.1007/s40571-024-00719-w","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the influence of fractures on the mechanical properties and cracking behavior of composite rock mass was investigated by preparing rock-like specimens of composite rock mass with different dip angles of fractures using customized molds. The failure process of the sample was recorded using a camera, and the rock failure process analysis technology was used for quantitative investigation of the mechanical mechanism of crack evolution during the loading process of the sample. Based on the experimental results, the crack propagation and coalescence modes of fractured composite rock mass were analyzed, and the distribution laws of contact force chain and maximum principal stress during initial crack initiation were studied from the microscopic perspective. The results show that with the increase in fracture dip angle, when the fracture is located in hard rock, the peak strength of the specimen decreases first, then increases and then decreases. When the fracture is located in both soft rock and hard rock, the peak strength of the specimen is mainly controlled by the fracture in soft rock. The initial crack mainly occurs at the tip of the soft rock fracture, and then converges with the cracks developed at the end of the hard rock fracture through the interface. The crack propagation type and coalescence mode are affected by the joint action of the fracture dip angle and position. In total, eight crack propagation types and six crack coalescence modes were observed during the failure process. The maximum principal stress concentration area is distributed around the fracture and is “butterfly” type. With the increase in fracture dip angle, the maximum principal stress concentration area gets gradually deflected perpendicular to the fracture direction, and does not pass through the interface of soft and hard rocks. The existence of the interface prevents the transmission of stress to a certain extent.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"11 5","pages":"1937 - 1957"},"PeriodicalIF":2.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00719-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the influence of fractures on the mechanical properties and cracking behavior of composite rock mass was investigated by preparing rock-like specimens of composite rock mass with different dip angles of fractures using customized molds. The failure process of the sample was recorded using a camera, and the rock failure process analysis technology was used for quantitative investigation of the mechanical mechanism of crack evolution during the loading process of the sample. Based on the experimental results, the crack propagation and coalescence modes of fractured composite rock mass were analyzed, and the distribution laws of contact force chain and maximum principal stress during initial crack initiation were studied from the microscopic perspective. The results show that with the increase in fracture dip angle, when the fracture is located in hard rock, the peak strength of the specimen decreases first, then increases and then decreases. When the fracture is located in both soft rock and hard rock, the peak strength of the specimen is mainly controlled by the fracture in soft rock. The initial crack mainly occurs at the tip of the soft rock fracture, and then converges with the cracks developed at the end of the hard rock fracture through the interface. The crack propagation type and coalescence mode are affected by the joint action of the fracture dip angle and position. In total, eight crack propagation types and six crack coalescence modes were observed during the failure process. The maximum principal stress concentration area is distributed around the fracture and is “butterfly” type. With the increase in fracture dip angle, the maximum principal stress concentration area gets gradually deflected perpendicular to the fracture direction, and does not pass through the interface of soft and hard rocks. The existence of the interface prevents the transmission of stress to a certain extent.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.