Sergio D. Guendulain-Garcia, Anastazia T. Banaszak, Lorenzo Álvarez-Filip, Andrea M. Quattrini, Andrés Lopez-Perez
{"title":"Three-dimensional morphological variation and physical functionality of Caribbean corals","authors":"Sergio D. Guendulain-Garcia, Anastazia T. Banaszak, Lorenzo Álvarez-Filip, Andrea M. Quattrini, Andrés Lopez-Perez","doi":"10.1007/s00338-024-02472-1","DOIUrl":null,"url":null,"abstract":"<p>Reef functionality depends on the coral community’s species composition, abundance, and on the capacity of corals to build carbonate structures. Nevertheless, the coral’s contribution to functionality remains hidden in species morphological variation displayed. Here, we use three-dimensional (3D) models to estimate the morpho-functional space of 14 Caribbean coral species by combining information from five morphological traits (sphericity, convexity, packing, first moment of surface area, and first moment of volume). Based on a principal component analysis, we selected the trait that captured most of the coral morphological variation to address the effect of colony size on structural complexity, shelter volume, and efficiency of resource use in terms of colony volume and calcium carbonate (CaCO<sub>3</sub>) investment. At the species level, structural complexity increased as a function of coral colony size in branching, digitate, and columnar coral species. Shelter volume increased with colony size in all species; however, branching species such as <i>Acropora palmata</i> not only provide more shelter volume than species with simpler morphologies, but they do so more efficiently, investing less colony volume and CaCO<sub>3</sub> mass for attaining the same shelter volume. Tracking changes in coral morphologies and colony size can improve our ability to predict functional repercussions from modifications to coral assemblages that are caused by, for example, disease outbreaks or environmental disturbances.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"30 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02472-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reef functionality depends on the coral community’s species composition, abundance, and on the capacity of corals to build carbonate structures. Nevertheless, the coral’s contribution to functionality remains hidden in species morphological variation displayed. Here, we use three-dimensional (3D) models to estimate the morpho-functional space of 14 Caribbean coral species by combining information from five morphological traits (sphericity, convexity, packing, first moment of surface area, and first moment of volume). Based on a principal component analysis, we selected the trait that captured most of the coral morphological variation to address the effect of colony size on structural complexity, shelter volume, and efficiency of resource use in terms of colony volume and calcium carbonate (CaCO3) investment. At the species level, structural complexity increased as a function of coral colony size in branching, digitate, and columnar coral species. Shelter volume increased with colony size in all species; however, branching species such as Acropora palmata not only provide more shelter volume than species with simpler morphologies, but they do so more efficiently, investing less colony volume and CaCO3 mass for attaining the same shelter volume. Tracking changes in coral morphologies and colony size can improve our ability to predict functional repercussions from modifications to coral assemblages that are caused by, for example, disease outbreaks or environmental disturbances.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.