Study and Experimental Validation of a 0.34 THz Double Corrugated Waveguide Interaction Structure for Backward Wave Oscillator with Sheet Electron Beam
IF 1.8 3区 工程技术Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jibran Latif, Zhanliang Wang, Atif Jameel, Muhammad Khawar Nadeem, Bilawal Ali, Uzair Shakir, Jinjun Feng, Yubin Gong
{"title":"Study and Experimental Validation of a 0.34 THz Double Corrugated Waveguide Interaction Structure for Backward Wave Oscillator with Sheet Electron Beam","authors":"Jibran Latif, Zhanliang Wang, Atif Jameel, Muhammad Khawar Nadeem, Bilawal Ali, Uzair Shakir, Jinjun Feng, Yubin Gong","doi":"10.1007/s10762-024-00974-1","DOIUrl":null,"url":null,"abstract":"<p>Terahertz backward wave oscillators based on double corrugated waveguides are enabling devices for modern satellite communication systems. This research focuses on the design of a 0.34 THz double corrugated waveguide-based interaction structure using a sheet beam. This choice allows the use of shorter pillars along with a narrow gap between pillar rows. Shorter pillars are easier to manufacture and a narrow gap is required for better interaction impedance. Circular beams restrict the use of larger pillars and narrow gap between pillars. The performance of this interaction structure is compared with a folded waveguide. Under the same operating conditions involving a 20 kV beam voltage and a 30 mA beam current, the double corrugated waveguide interaction structure exhibits impressive performance in simulations, featuring an interaction impedance of 0.52 <span>\\({\\varOmega }\\)</span> at 0.34 THz, an output power of 3.2 W, and a bandwidth extending to approximately 20 GHz. In contrast, the folded waveguide, as per simulation results, registers values of 0.43 <span>\\({\\varOmega }\\)</span>, 2.6 W, and a 12 GHz bandwidth, respectively. The proposed double corrugated waveguide-based interaction structure is fabricated using modern CNC machining. Experimental validation reinforces the effectiveness of this design, with measurements indicating reflection below −20 dB and transmission exceeding −2 dB.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"27 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00974-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Terahertz backward wave oscillators based on double corrugated waveguides are enabling devices for modern satellite communication systems. This research focuses on the design of a 0.34 THz double corrugated waveguide-based interaction structure using a sheet beam. This choice allows the use of shorter pillars along with a narrow gap between pillar rows. Shorter pillars are easier to manufacture and a narrow gap is required for better interaction impedance. Circular beams restrict the use of larger pillars and narrow gap between pillars. The performance of this interaction structure is compared with a folded waveguide. Under the same operating conditions involving a 20 kV beam voltage and a 30 mA beam current, the double corrugated waveguide interaction structure exhibits impressive performance in simulations, featuring an interaction impedance of 0.52 \({\varOmega }\) at 0.34 THz, an output power of 3.2 W, and a bandwidth extending to approximately 20 GHz. In contrast, the folded waveguide, as per simulation results, registers values of 0.43 \({\varOmega }\), 2.6 W, and a 12 GHz bandwidth, respectively. The proposed double corrugated waveguide-based interaction structure is fabricated using modern CNC machining. Experimental validation reinforces the effectiveness of this design, with measurements indicating reflection below −20 dB and transmission exceeding −2 dB.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.