Laser soldering of nickel plated steel sheets

IF 1.7 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Andor Körmöczi, G. Horváth, Tamás Szörényi, Z. Geretovszky
{"title":"Laser soldering of nickel plated steel sheets","authors":"Andor Körmöczi, G. Horváth, Tamás Szörényi, Z. Geretovszky","doi":"10.2351/7.0001244","DOIUrl":null,"url":null,"abstract":"The growing prominence of the electric vehicle industry, fueled by environmental concerns, has demanded innovation in various aspects of battery technologies with special emphasis on increasing the efficiency of both electric storage and its retrieval. An unexplored area of this is to identify the possibilities and limits of laser soldering. Here, we reveal the effects of surface pretreatment conditions and the amount of filler, along with the laser power and irradiation time on the characteristics of laser-soldered joints, by simultaneously evaluating the electrical and mechanical behavior of laser-soldered nickel-plated steel sheets (Hilumin®). By describing the morphological characteristics of the resolidified solder and the electrical and mechanical properties of the joints, we identify three, characteristically different morphological appearances and highlight the optimal one, where uniform and mostly void-free solder can be produced. Furthermore, we report a correlation between the threshold of upper sheet melting (either expressed as laser power or irradiation time) and joint deterioration in terms of the electrical and mechanical properties of the joint. We conclude that laser soldering can create joints with outstanding electrical conductance and adequate mechanical stability that meets the critical specifications of battery joining technologies when the surface pretreatment condition and processing parameters are properly optimized.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2351/7.0001244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing prominence of the electric vehicle industry, fueled by environmental concerns, has demanded innovation in various aspects of battery technologies with special emphasis on increasing the efficiency of both electric storage and its retrieval. An unexplored area of this is to identify the possibilities and limits of laser soldering. Here, we reveal the effects of surface pretreatment conditions and the amount of filler, along with the laser power and irradiation time on the characteristics of laser-soldered joints, by simultaneously evaluating the electrical and mechanical behavior of laser-soldered nickel-plated steel sheets (Hilumin®). By describing the morphological characteristics of the resolidified solder and the electrical and mechanical properties of the joints, we identify three, characteristically different morphological appearances and highlight the optimal one, where uniform and mostly void-free solder can be produced. Furthermore, we report a correlation between the threshold of upper sheet melting (either expressed as laser power or irradiation time) and joint deterioration in terms of the electrical and mechanical properties of the joint. We conclude that laser soldering can create joints with outstanding electrical conductance and adequate mechanical stability that meets the critical specifications of battery joining technologies when the surface pretreatment condition and processing parameters are properly optimized.
激光焊接镀镍钢板
在环境问题的推动下,电动汽车行业的地位日益突出,这就要求在电池技术的各个方面进行创新,重点是提高蓄电和取电的效率。其中一个尚未探索的领域是确定激光焊接的可能性和局限性。在这里,我们通过同时评估激光焊接镀镍钢板(Hilumin®)的电气和机械行为,揭示了表面预处理条件、填料用量、激光功率和照射时间对激光焊接接头特性的影响。通过描述分解焊料的形态特征以及焊点的电气和机械性能,我们确定了三种不同的形态特征,并强调了最佳的形态特征,即可以产生均匀且基本无空隙的焊料。此外,我们还报告了上层薄片熔化阈值(用激光功率或照射时间表示)与焊点电气和机械性能劣化之间的相关性。我们得出的结论是,如果表面预处理条件和加工参数得到适当优化,激光焊接可以产生具有出色导电性和足够机械稳定性的焊点,从而满足电池连接技术的关键规格要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
9.50%
发文量
125
审稿时长
>12 weeks
期刊介绍: The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety. The following international and well known first-class scientists serve as allocated Editors in 9 new categories: High Precision Materials Processing with Ultrafast Lasers Laser Additive Manufacturing High Power Materials Processing with High Brightness Lasers Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures Surface Modification Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology Spectroscopy / Imaging / Diagnostics / Measurements Laser Systems and Markets Medical Applications & Safety Thermal Transportation Nanomaterials and Nanoprocessing Laser applications in Microelectronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信