On a class of elliptic equations with critical perturbations in the hyperbolic space

D. Ganguly, Diksha Gupta, K. Sreenadh
{"title":"On a class of elliptic equations with critical perturbations in the hyperbolic space","authors":"D. Ganguly, Diksha Gupta, K. Sreenadh","doi":"10.3233/asy-241895","DOIUrl":null,"url":null,"abstract":"We study the existence and non-existence of positive solutions for the following class of nonlinear elliptic problems in the hyperbolic space − Δ B N u − λ u = a ( x ) u p − 1 + ε u 2 ∗ − 1 in  B N , u ∈ H 1 ( B N ) , where B N denotes the hyperbolic space, 2 < p < 2 ∗ : = 2 N N − 2 , if N ⩾ 3 ; 2 < p < + ∞, if N = 2, λ < ( N − 1 ) 2 4 , and 0 < a ∈ L ∞ ( B N ). We first prove the existence of a positive radially symmetric ground-state solution for a ( x ) ≡ 1. Next, we prove that for a ( x ) ⩾ 1, there exists a ground-state solution for ε small. For proof, we employ “conformal change of metric” which allows us to transform the original equation into a singular equation in a ball in R N . Then by carefully analysing the energy level using blow-up arguments, we prove the existence of a ground-state solution. Finally, the case a ( x ) ⩽ 1 is considered where we first show that there is no ground-state solution, and prove the existence of a bound-state solution (high energy solution) for ε small. We employ variational arguments in the spirit of Bahri–Li to prove the existence of high energy-bound-state solutions in the hyperbolic space.","PeriodicalId":505560,"journal":{"name":"Asymptotic Analysis","volume":"9 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/asy-241895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence and non-existence of positive solutions for the following class of nonlinear elliptic problems in the hyperbolic space − Δ B N u − λ u = a ( x ) u p − 1 + ε u 2 ∗ − 1 in  B N , u ∈ H 1 ( B N ) , where B N denotes the hyperbolic space, 2 < p < 2 ∗ : = 2 N N − 2 , if N ⩾ 3 ; 2 < p < + ∞, if N = 2, λ < ( N − 1 ) 2 4 , and 0 < a ∈ L ∞ ( B N ). We first prove the existence of a positive radially symmetric ground-state solution for a ( x ) ≡ 1. Next, we prove that for a ( x ) ⩾ 1, there exists a ground-state solution for ε small. For proof, we employ “conformal change of metric” which allows us to transform the original equation into a singular equation in a ball in R N . Then by carefully analysing the energy level using blow-up arguments, we prove the existence of a ground-state solution. Finally, the case a ( x ) ⩽ 1 is considered where we first show that there is no ground-state solution, and prove the existence of a bound-state solution (high energy solution) for ε small. We employ variational arguments in the spirit of Bahri–Li to prove the existence of high energy-bound-state solutions in the hyperbolic space.
论双曲空间中一类具有临界扰动的椭圆方程
我们研究双曲空间中以下一类非线性椭圆问题正解的存在与不存在 - Δ B N u - λ u = a ( x ) u p - 1 + ε u 2 ∗ - 1 in B N , u ∈ H 1 ( B N ) , 其中 B N 表示双曲空间, 2 < p < 2 ∗ := 2 N N - 2 , 若 N ⩾ 3 ; 2 < p < + ∞ , 若 N = 2, λ < ( N - 1 ) 2 4 , 且 0 < a∈ L ∞ ( B N ).我们首先证明 a ( x ) ≡ 1 时存在正径向对称的基态解。接下来,我们证明对于 a ( x ) ⩾ 1,存在一个ε很小的基态解。为了证明这一点,我们采用了 "度量的保角变化",它允许我们把原方程转化为 R N 中一个球上的奇异方程。然后,通过使用炸毁论证对能级进行仔细分析,我们证明了基态解的存在。最后,我们考虑 a ( x ) ⩽ 1 的情况,首先证明不存在基态解,然后证明在 ε 较小的情况下存在边界解(高能量解)。我们以 Bahri-Li 的精神运用变分论证来证明双曲空间中高能束缚态解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信