Sliding tribological properties of nano-sized ceramic particles as oil-based lubricant additives

Bingxu Wang, Renxu Wang, Xinbo Xiang, Slim Dailamy Zarooq, Yongfeng Yuan, Shao-yi Guo, G. Barber
{"title":"Sliding tribological properties of nano-sized ceramic particles as oil-based lubricant additives","authors":"Bingxu Wang, Renxu Wang, Xinbo Xiang, Slim Dailamy Zarooq, Yongfeng Yuan, Shao-yi Guo, G. Barber","doi":"10.1177/23977914241231888","DOIUrl":null,"url":null,"abstract":"The present research investigated the lubricating performance of ZnO, SiO2, and WS2 nanoparticles as oil additives applied on steel frictional pairs. The study consisted of two stages. In first stage, the lubricating properties of nanofluids were examined using the various nanoparticle concentrations. It was obtained that the 3wt% ZnO, 5wt% SiO2, and 3wt% WS2 nanofluids showed the best performance. In second stage, an orthogonal test matrix was designed to understand the influences of load, sliding frequency and surface roughness on the lubricating behavior of the nanofluids. It was found that the frequency and load had the most significant effects on the friction reduction and anti-wear properties of ZnO, SiO2, and WS2 nanofluids. By using scanning electron microscopy and energy dispersive X-ray spectroscopy for potential mechanisms. It was found that the nanoparticles could be physically embedded, and adhered to the worn areas to form tribo-films resulting in improved tribological performance.","PeriodicalId":516661,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","volume":"81 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23977914241231888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present research investigated the lubricating performance of ZnO, SiO2, and WS2 nanoparticles as oil additives applied on steel frictional pairs. The study consisted of two stages. In first stage, the lubricating properties of nanofluids were examined using the various nanoparticle concentrations. It was obtained that the 3wt% ZnO, 5wt% SiO2, and 3wt% WS2 nanofluids showed the best performance. In second stage, an orthogonal test matrix was designed to understand the influences of load, sliding frequency and surface roughness on the lubricating behavior of the nanofluids. It was found that the frequency and load had the most significant effects on the friction reduction and anti-wear properties of ZnO, SiO2, and WS2 nanofluids. By using scanning electron microscopy and energy dispersive X-ray spectroscopy for potential mechanisms. It was found that the nanoparticles could be physically embedded, and adhered to the worn areas to form tribo-films resulting in improved tribological performance.
纳米级陶瓷颗粒作为油基润滑油添加剂的滑动摩擦特性
本研究调查了作为油添加剂的 ZnO、SiO2 和 WS2 纳米粒子在钢摩擦副上的润滑性能。研究分为两个阶段。第一阶段,使用不同浓度的纳米粒子检测纳米流体的润滑性能。结果表明,3wt% ZnO、5wt% SiO2 和 3wt% WS2 纳米流体的性能最佳。第二阶段设计了一个正交试验矩阵,以了解载荷、滑动频率和表面粗糙度对纳米流体润滑行为的影响。结果发现,频率和载荷对 ZnO、SiO2 和 WS2 纳米流体的减摩和抗磨损性能影响最大。利用扫描电子显微镜和能量色散 X 射线光谱分析潜在机理。研究发现,纳米粒子可以物理嵌入并附着在磨损区域,形成三重膜,从而改善摩擦学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信