Results of semigroup of linear operators in extrapolation spaces

A. Akinyele, Christiana Funmilayo Ozokeraha, Shuayb Adedeji Oshodi, J. Omosowon
{"title":"Results of semigroup of linear operators in extrapolation spaces","authors":"A. Akinyele, Christiana Funmilayo Ozokeraha, Shuayb Adedeji Oshodi, J. Omosowon","doi":"10.56947/amcs.v21.256","DOIUrl":null,"url":null,"abstract":"Results of an omega-order preserving partial contraction mapping (omega-OCPn) in generalized spaces are presented in this study. Assumed to be a closed linear operator on a Banach space X with a non-empty resolvent set rho(A) is A in omega-OCPn. If A is densely defined, the extrapolation spaces X-1 and X-1 will be associated with A in agreement. However, X-1 is a proper closed subspace of X-1 if A is not densely defined. Then, we demonstrated that the reason these spaces exist is because (X*)-1 and D(A0) are naturally isomorphic to (X*)-1 and (X*)-1, respectively. ","PeriodicalId":504658,"journal":{"name":"Annals of Mathematics and Computer Science","volume":"76 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/amcs.v21.256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Results of an omega-order preserving partial contraction mapping (omega-OCPn) in generalized spaces are presented in this study. Assumed to be a closed linear operator on a Banach space X with a non-empty resolvent set rho(A) is A in omega-OCPn. If A is densely defined, the extrapolation spaces X-1 and X-1 will be associated with A in agreement. However, X-1 is a proper closed subspace of X-1 if A is not densely defined. Then, we demonstrated that the reason these spaces exist is because (X*)-1 and D(A0) are naturally isomorphic to (X*)-1 and (X*)-1, respectively. 
外推法空间中线性算子半群的结果
本研究介绍了广义空间中的欧米伽-阶保留部分收缩映射(omega-OCPn)的结果。假定omega-OCPn中的A是Banach空间X上的封闭线性算子,且具有非空解析集rho(A)。如果 A 是密集定义的,外推空间 X-1 和 X-1 将与 A 一致。但是,如果 A 不是密集定义的,X-1 就是 X-1 的一个适当的封闭子空间。然后,我们证明了这些空间存在的原因是 (X*)-1 和 D(A0) 分别与 (X*)-1 和 (X*)-1 自然同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信