Defining the mutational profile of lower-risk myelodysplastic neoplasm patients with respect to disease progression using next-generation sequencing and pyrosequencing
Monika Adamska, Ewelina Kowal-Wiśniewska, Joanna Czerwinska-Rybak, K. Kiwerska, M. Barańska, Weronika Gronowska, Jagoda Loba, Katarzyna Brzeźniakiewicz-Janus, Ewa Wasilewska, Aleksandra Łanocha, M. Jarmuż-Szymczak, Lidia Gil
{"title":"Defining the mutational profile of lower-risk myelodysplastic neoplasm patients with respect to disease progression using next-generation sequencing and pyrosequencing","authors":"Monika Adamska, Ewelina Kowal-Wiśniewska, Joanna Czerwinska-Rybak, K. Kiwerska, M. Barańska, Weronika Gronowska, Jagoda Loba, Katarzyna Brzeźniakiewicz-Janus, Ewa Wasilewska, Aleksandra Łanocha, M. Jarmuż-Szymczak, Lidia Gil","doi":"10.5114/wo.2023.135365","DOIUrl":null,"url":null,"abstract":"Introduction Lower-risk myelodysplastic neoplasms (LR-MDS) comprise the majority of MDS. Despite favourable prognoses, some patients remain at risk of rapid progression. We aimed to define the mutational profile of LR-MDS using next-generation sequencing (NGS), Sanger Sequencing (SSeq), and pyrosequencing. Material and methods Samples from 5 primary LR-MDS (67 exons of SF3B1, U2AF1, SRSF2, ZRSR2, TET2, ASXL1, DNMT3A, TP53, and RUNX1 genes) were subjected to NGS. Next, a genomic study was performed to test for the presence of identified DNA sequence variants on a larger group of LR-MDS patients (25 bone marrow [BM], 3 saliva [SAL], and one peripheral blood [PB] sample/s). Both SSeq (all selected DNA sequence variants) and pyrosequencing (9 selected DNA sequence variants) were performed. Results Next-generation sequencing results identified 13 DNA sequence variants in 7 genes, comprising 8 mutations in 6 genes (ASXL1, DNMT3A, RUNX1, SF3B1, TET2, ZRSR2) in LR-MDS. The presence of 8 DNA variants was detected in the expanded LR-MDS group using SSeq and pyrosequencing. Mutation acquisition was observed during LR-MDS progression. Four LR-MDS and one acute myeloid leukaemia myelodysplasia-related patient exhibited the presence of at least one mutation. ASXL1 and SF3B1 alterations were most commonly observed (2 patients). Five DNA sequence variants detected in BM (patients: 9, 13) were also present in SAL. Conclusions We suggest using NGS to determine the LR-MDS mutational profile at diagnosis and suspicion of disease progression. Moreover, PB and SAL molecular testing represent useful tools for monitoring LR-MDS at higher risk of progression. However, the results need to be confirmed in a larger group.","PeriodicalId":10652,"journal":{"name":"Contemporary Oncology","volume":"87 5","pages":"269 - 279"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5114/wo.2023.135365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction Lower-risk myelodysplastic neoplasms (LR-MDS) comprise the majority of MDS. Despite favourable prognoses, some patients remain at risk of rapid progression. We aimed to define the mutational profile of LR-MDS using next-generation sequencing (NGS), Sanger Sequencing (SSeq), and pyrosequencing. Material and methods Samples from 5 primary LR-MDS (67 exons of SF3B1, U2AF1, SRSF2, ZRSR2, TET2, ASXL1, DNMT3A, TP53, and RUNX1 genes) were subjected to NGS. Next, a genomic study was performed to test for the presence of identified DNA sequence variants on a larger group of LR-MDS patients (25 bone marrow [BM], 3 saliva [SAL], and one peripheral blood [PB] sample/s). Both SSeq (all selected DNA sequence variants) and pyrosequencing (9 selected DNA sequence variants) were performed. Results Next-generation sequencing results identified 13 DNA sequence variants in 7 genes, comprising 8 mutations in 6 genes (ASXL1, DNMT3A, RUNX1, SF3B1, TET2, ZRSR2) in LR-MDS. The presence of 8 DNA variants was detected in the expanded LR-MDS group using SSeq and pyrosequencing. Mutation acquisition was observed during LR-MDS progression. Four LR-MDS and one acute myeloid leukaemia myelodysplasia-related patient exhibited the presence of at least one mutation. ASXL1 and SF3B1 alterations were most commonly observed (2 patients). Five DNA sequence variants detected in BM (patients: 9, 13) were also present in SAL. Conclusions We suggest using NGS to determine the LR-MDS mutational profile at diagnosis and suspicion of disease progression. Moreover, PB and SAL molecular testing represent useful tools for monitoring LR-MDS at higher risk of progression. However, the results need to be confirmed in a larger group.