Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes

Laila Hamza, S. E. Laouini, Hamdi Ali Mohammed, Souhaila Meneceur, Chaima Salmi, Fahad Alharthi, Souheila Legmairi, Johar Amin Ahmed Abdullah
{"title":"Biosynthesis of ZnO/Ag nanocomposites heterostructure for efficient photocatalytic degradation of antibiotics and synthetic dyes","authors":"Laila Hamza, S. E. Laouini, Hamdi Ali Mohammed, Souhaila Meneceur, Chaima Salmi, Fahad Alharthi, Souheila Legmairi, Johar Amin Ahmed Abdullah","doi":"10.1515/zpch-2023-0379","DOIUrl":null,"url":null,"abstract":"\n This study addresses the pressing issue of environmental pollution caused by antibiotics and synthetic dyes in aquatic ecosystems, presenting a novel approach for their efficient photocatalytic degradation. Zinc oxide (ZnO)-based nanoscale photocatalysts, including ZnO nanoparticles (NPs) and ZnO/Ag nanocomposite heterostructure (NCH), were synthesized through an innovative and eco-friendly method utilizing an extract derived from discarded lemon peels as a biogenic reducing agent. The synthesized materials were extensively characterized through UV spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results confirmed the different morphologies of ZnO NPs and ZnO/Ag NCH, with average sizes of 20 nm and 42 nm, respectively. Notably, the ZnO NPs and ZnO/Ag NCH exhibited optical bandgap energies of 3.2 eV and 2.85 eV, respectively, signifying their potential as efficient photocatalysts. Under natural sunlight irradiation, these materials demonstrated exceptional photocatalytic activity, achieving a remarkable 98.8 % degradation rate for metronidazole and 90 % for ciprofloxacin in just 12 min. Furthermore, the ZnO NPs effectively removed 84 % of Toluidine Blue and 77 % of Congo red after 120 min, while ZnO/Ag NCH enhanced degradation rates to approximately 90.5 % for Toluidine Blue and 86 % for Congo Red. This research highlights the significant physicochemical properties and novel synthesis methods employed, positioning these sustainable nanomaterials as promising solutions for mitigating environmental pollution effectively.","PeriodicalId":23847,"journal":{"name":"Zeitschrift für Physikalische Chemie","volume":"13 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Physikalische Chemie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zpch-2023-0379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the pressing issue of environmental pollution caused by antibiotics and synthetic dyes in aquatic ecosystems, presenting a novel approach for their efficient photocatalytic degradation. Zinc oxide (ZnO)-based nanoscale photocatalysts, including ZnO nanoparticles (NPs) and ZnO/Ag nanocomposite heterostructure (NCH), were synthesized through an innovative and eco-friendly method utilizing an extract derived from discarded lemon peels as a biogenic reducing agent. The synthesized materials were extensively characterized through UV spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results confirmed the different morphologies of ZnO NPs and ZnO/Ag NCH, with average sizes of 20 nm and 42 nm, respectively. Notably, the ZnO NPs and ZnO/Ag NCH exhibited optical bandgap energies of 3.2 eV and 2.85 eV, respectively, signifying their potential as efficient photocatalysts. Under natural sunlight irradiation, these materials demonstrated exceptional photocatalytic activity, achieving a remarkable 98.8 % degradation rate for metronidazole and 90 % for ciprofloxacin in just 12 min. Furthermore, the ZnO NPs effectively removed 84 % of Toluidine Blue and 77 % of Congo red after 120 min, while ZnO/Ag NCH enhanced degradation rates to approximately 90.5 % for Toluidine Blue and 86 % for Congo Red. This research highlights the significant physicochemical properties and novel synthesis methods employed, positioning these sustainable nanomaterials as promising solutions for mitigating environmental pollution effectively.
生物合成用于高效光催化降解抗生素和合成染料的氧化锌/银纳米复合材料异质结构
本研究针对水生生态系统中抗生素和合成染料造成的环境污染这一紧迫问题,提出了一种高效光催化降解抗生素和合成染料的新方法。利用从废弃柠檬皮中提取的提取物作为生物还原剂,通过创新的环保方法合成了基于氧化锌(ZnO)的纳米级光催化剂,包括氧化锌纳米颗粒(NPs)和氧化锌/银纳米复合异质结构(NCH)。通过紫外分光光度法、X 射线衍射 (XRD)、扫描电子显微镜 (SEM) 和傅立叶变换红外光谱 (FTIR) 对合成材料进行了广泛表征。结果证实,氧化锌 NPs 和氧化锌/银 NCH 的形态各异,平均尺寸分别为 20 纳米和 42 纳米。值得注意的是,ZnO NPs 和 ZnO/Ag NCH 的光带隙能量分别为 3.2 eV 和 2.85 eV,这表明它们具有作为高效光催化剂的潜力。在自然阳光照射下,这些材料表现出卓越的光催化活性,仅在 12 分钟内就实现了 98.8% 的甲硝唑降解率和 90% 的环丙沙星降解率。此外,氧化锌氮氧化物在 120 分钟后可有效去除 84% 的甲苯胺蓝和 77% 的刚果红,而氧化锌/银 NCH 则可将甲苯胺蓝和刚果红的降解率分别提高到约 90.5% 和 86%。这项研究强调了这些可持续纳米材料的重要理化特性和所采用的新型合成方法,并将其定位为有效缓解环境污染的有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信