Distributed Graph Algorithms: From Local Data to Global Solutions

Jiaheng Zhang
{"title":"Distributed Graph Algorithms: From Local Data to Global Solutions","authors":"Jiaheng Zhang","doi":"10.61173/87grxw45","DOIUrl":null,"url":null,"abstract":"As data scales increase, traditional centralized graph algorithms struggle to meet modern computational demands. Distributed graph algorithms, which parallelize data processing across multiple computing nodes, have significantly improved the efficiency of handling large-scale graph data. This report explores the principles, application scenarios, key technologies, and challenges of distributed graph algorithms, aiming to provide a comprehensive perspective from local data to global solutions. With the rapid development of computer networks and big data technologies, solving large-scale graph data problems has become a hot research topic. Distributed graph algorithms can solve problems without global information and offer new solutions for processing massive graph structures. This report introduces the basic concepts, key technologies, and challenges of distributed graph algorithms and discusses methods for achieving global solutions starting from local data through case analyses.","PeriodicalId":438278,"journal":{"name":"Science and Technology of Engineering, Chemistry and Environmental Protection","volume":"3 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Engineering, Chemistry and Environmental Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61173/87grxw45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As data scales increase, traditional centralized graph algorithms struggle to meet modern computational demands. Distributed graph algorithms, which parallelize data processing across multiple computing nodes, have significantly improved the efficiency of handling large-scale graph data. This report explores the principles, application scenarios, key technologies, and challenges of distributed graph algorithms, aiming to provide a comprehensive perspective from local data to global solutions. With the rapid development of computer networks and big data technologies, solving large-scale graph data problems has become a hot research topic. Distributed graph algorithms can solve problems without global information and offer new solutions for processing massive graph structures. This report introduces the basic concepts, key technologies, and challenges of distributed graph algorithms and discusses methods for achieving global solutions starting from local data through case analyses.
分布式图算法:从本地数据到全球解决方案
随着数据规模的扩大,传统的集中式图形算法难以满足现代计算需求。分布式图算法在多个计算节点上并行处理数据,大大提高了处理大规模图数据的效率。本报告探讨了分布式图算法的原理、应用场景、关键技术和挑战,旨在提供从局部数据到全局解决方案的全面视角。随着计算机网络和大数据技术的快速发展,解决大规模图数据问题已成为研究热点。分布式图算法可以解决没有全局信息的问题,为处理海量图结构提供了新的解决方案。本报告介绍了分布式图算法的基本概念、关键技术和挑战,并通过案例分析探讨了从局部数据出发实现全局解决方案的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信