On a Lord–Shulman swelling porous thermo-elastic soils system with microtemperature effect: well-posedness and stability results

Pub Date : 2024-02-19 DOI:10.1007/s13370-024-01170-z
Abdelbaki Choucha, Salah Boulaaras, Rashid Jan
{"title":"On a Lord–Shulman swelling porous thermo-elastic soils system with microtemperature effect: well-posedness and stability results","authors":"Abdelbaki Choucha,&nbsp;Salah Boulaaras,&nbsp;Rashid Jan","doi":"10.1007/s13370-024-01170-z","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the well-posedness and stability outcomes of the one-dimensional Cauchy problem within a system involving swelling-porous elastic soils and thermal effects. The heat conduction in this system is described by the Lord–Shulman theory. By the energy method, we establish the existence of solutions and then prove an exponential stability result under suitable hypotheses. Our results were achieved without the need for the condition of equal velocities, and it is also considered a good improvement to our work in the paper (Choucha et al. in Mathematics 11(23):4785, 2023), completely dispensing with any damping term.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01170-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigates the well-posedness and stability outcomes of the one-dimensional Cauchy problem within a system involving swelling-porous elastic soils and thermal effects. The heat conduction in this system is described by the Lord–Shulman theory. By the energy method, we establish the existence of solutions and then prove an exponential stability result under suitable hypotheses. Our results were achieved without the need for the condition of equal velocities, and it is also considered a good improvement to our work in the paper (Choucha et al. in Mathematics 11(23):4785, 2023), completely dispensing with any damping term.

分享
查看原文
关于具有微温效应的 Lord-Shulman 膨胀多孔热弹性土壤系统:拟合良好性和稳定性结果
这项研究探讨了在一个涉及膨胀多孔弹性土壤和热效应的系统中,一维 Cauchy 问题的好拟性和稳定性结果。该系统中的热传导由 Lord-Shulman 理论描述。通过能量法,我们建立了解的存在性,然后在适当的假设条件下证明了指数稳定性结果。我们的结果是在不需要等速条件的情况下取得的,这也被认为是对我们在论文(Choucha et al. in Mathematics 11(23):4785, 2023)中的工作的一个很好的改进,完全省去了任何阻尼项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信