{"title":"StyleGAN2-ADA and Real-ESRGAN: Thai font generation with generative adversarial networks","authors":"Nidchapan Nitisukanan, Chotika Boonthaweechok, Prapatsorn Tiawpanichkij, Juthamas Pissakul, Naliya Maneesawangwong, Thitirat Siriborvornratanakul","doi":"10.1007/s43674-024-00069-3","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary font design is a labor-intensive process. To address this, we utilize deep learning, specifically StyleGAN2-ADA and Real-ESRGAN, for automated Thai font generation. StyleGAN2-ADA incorporates adaptive discriminator augmentation (ADA) for image synthesis. By integrating Real-ESRGAN, font quality is enhanced. Our approach produces diverse, high-resolution fonts, as demonstrated in comparative experiments. In a survey with 50 participants, StyleGAN2-ADA without augmentation proves superior in legibility and visual appeal, while StyleGAN2-ADA with augmentation excels in diversity. This research highlights the efficiency of deep learning in creating high-quality Thai fonts and has implications for automated font design advancement.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-024-00069-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Contemporary font design is a labor-intensive process. To address this, we utilize deep learning, specifically StyleGAN2-ADA and Real-ESRGAN, for automated Thai font generation. StyleGAN2-ADA incorporates adaptive discriminator augmentation (ADA) for image synthesis. By integrating Real-ESRGAN, font quality is enhanced. Our approach produces diverse, high-resolution fonts, as demonstrated in comparative experiments. In a survey with 50 participants, StyleGAN2-ADA without augmentation proves superior in legibility and visual appeal, while StyleGAN2-ADA with augmentation excels in diversity. This research highlights the efficiency of deep learning in creating high-quality Thai fonts and has implications for automated font design advancement.