StyleGAN2-ADA and Real-ESRGAN: Thai font generation with generative adversarial networks

Nidchapan Nitisukanan, Chotika Boonthaweechok, Prapatsorn Tiawpanichkij, Juthamas Pissakul, Naliya Maneesawangwong, Thitirat Siriborvornratanakul
{"title":"StyleGAN2-ADA and Real-ESRGAN: Thai font generation with generative adversarial networks","authors":"Nidchapan Nitisukanan,&nbsp;Chotika Boonthaweechok,&nbsp;Prapatsorn Tiawpanichkij,&nbsp;Juthamas Pissakul,&nbsp;Naliya Maneesawangwong,&nbsp;Thitirat Siriborvornratanakul","doi":"10.1007/s43674-024-00069-3","DOIUrl":null,"url":null,"abstract":"<div><p>Contemporary font design is a labor-intensive process. To address this, we utilize deep learning, specifically StyleGAN2-ADA and Real-ESRGAN, for automated Thai font generation. StyleGAN2-ADA incorporates adaptive discriminator augmentation (ADA) for image synthesis. By integrating Real-ESRGAN, font quality is enhanced. Our approach produces diverse, high-resolution fonts, as demonstrated in comparative experiments. In a survey with 50 participants, StyleGAN2-ADA without augmentation proves superior in legibility and visual appeal, while StyleGAN2-ADA with augmentation excels in diversity. This research highlights the efficiency of deep learning in creating high-quality Thai fonts and has implications for automated font design advancement.</p></div>","PeriodicalId":72089,"journal":{"name":"Advances in computational intelligence","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in computational intelligence","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43674-024-00069-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary font design is a labor-intensive process. To address this, we utilize deep learning, specifically StyleGAN2-ADA and Real-ESRGAN, for automated Thai font generation. StyleGAN2-ADA incorporates adaptive discriminator augmentation (ADA) for image synthesis. By integrating Real-ESRGAN, font quality is enhanced. Our approach produces diverse, high-resolution fonts, as demonstrated in comparative experiments. In a survey with 50 participants, StyleGAN2-ADA without augmentation proves superior in legibility and visual appeal, while StyleGAN2-ADA with augmentation excels in diversity. This research highlights the efficiency of deep learning in creating high-quality Thai fonts and has implications for automated font design advancement.

Abstract Image

StyleGAN2-ADA 和 Real-ESRGAN:利用生成式对抗网络生成泰文字体
现代字体设计是一个劳动密集型过程。为了解决这个问题,我们利用深度学习,特别是 StyleGAN2-ADA 和 Real-ESRGAN,来自动生成泰文字体。StyleGAN2-ADA 将自适应判别器增强(ADA)用于图像合成。通过集成 Real-ESRGAN,字体质量得到了提升。对比实验证明,我们的方法可以生成多样化、高分辨率的字体。在一项有 50 名参与者参与的调查中,没有增强功能的 StyleGAN2-ADA 在可读性和视觉吸引力方面更胜一筹,而有增强功能的 StyleGAN2-ADA 则在多样性方面表现出色。这项研究凸显了深度学习在创建高质量泰文字体方面的效率,并对自动字体设计的发展具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信