{"title":"Effects of edge-localized electron cyclotron current drive on edge-localized mode suppression by resonant magnetic perturbations in DIII-D","authors":"Qiming Hu, N. Logan, Qingquan Yu, A. Bortolon","doi":"10.1088/1741-4326/ad2ca8","DOIUrl":null,"url":null,"abstract":"\n According to recent DIII-D experiments (N.C. Logan et al 2024 Nucl.Fusion 64 014003), injecting edge localized electron cyclotron current drive (ECCD) in the counter-plasma-current (counter-Ip) direction reduces the n = 3 resonant magnetic perturbation (RMP) current threshold for ELM suppression, while co-Ip ECCD during the suppressed ELM phase causes a back transition to ELMing. This paper presents nonlinear two-fluid simulations on the ECCD manipulation of edge magnetic islands induced by RMP using the TM1 code. In the presence of a magnetic island chain at the pedestal-top, co-Ip ECCD is found to decrease the island width and restore the initially degraded pedestal pressure when its radial deposition location is close to the rational surface of the island. With a sufficiently strong co-Ip ECCD current, the RMP-driven magnetic island can be healed, and the pedestal pressure fully recovers to its initial ELMing state. On the contrary, counter-Ip ECCD is found to increase the island width and further reduce the pedestal pressure to levels significantly below the peeling-ballooning-mode limited height, leading to even stationary ELM suppression. These simulations align with the results from DIII-D experiments. However, when multiple magnetic island chains are present at the pedestal-top, the ECCD current experiences substantial broadening, and its effects on the island width and pedestal pressure become negligible. Further simulations reveal that counter-Ip ECCD enhances RMP penetration by lowering the penetration threshold, with the degree of reduction proportional to the amplitude of ECCD current. For the ~1 MW ECCD in DIII-D, the predicted decrease in the RMP penetration threshold for ELM suppression is approximately 20%, consistent with experimental observations. These simulations indicate that edge-localized ECCD can be used to either facilitate RMP ELM suppression or optimize the confinement degradation.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"34 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad2ca8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
According to recent DIII-D experiments (N.C. Logan et al 2024 Nucl.Fusion 64 014003), injecting edge localized electron cyclotron current drive (ECCD) in the counter-plasma-current (counter-Ip) direction reduces the n = 3 resonant magnetic perturbation (RMP) current threshold for ELM suppression, while co-Ip ECCD during the suppressed ELM phase causes a back transition to ELMing. This paper presents nonlinear two-fluid simulations on the ECCD manipulation of edge magnetic islands induced by RMP using the TM1 code. In the presence of a magnetic island chain at the pedestal-top, co-Ip ECCD is found to decrease the island width and restore the initially degraded pedestal pressure when its radial deposition location is close to the rational surface of the island. With a sufficiently strong co-Ip ECCD current, the RMP-driven magnetic island can be healed, and the pedestal pressure fully recovers to its initial ELMing state. On the contrary, counter-Ip ECCD is found to increase the island width and further reduce the pedestal pressure to levels significantly below the peeling-ballooning-mode limited height, leading to even stationary ELM suppression. These simulations align with the results from DIII-D experiments. However, when multiple magnetic island chains are present at the pedestal-top, the ECCD current experiences substantial broadening, and its effects on the island width and pedestal pressure become negligible. Further simulations reveal that counter-Ip ECCD enhances RMP penetration by lowering the penetration threshold, with the degree of reduction proportional to the amplitude of ECCD current. For the ~1 MW ECCD in DIII-D, the predicted decrease in the RMP penetration threshold for ELM suppression is approximately 20%, consistent with experimental observations. These simulations indicate that edge-localized ECCD can be used to either facilitate RMP ELM suppression or optimize the confinement degradation.