Enhanced Thermoelectric Performance of Cu2Se Alloys by Simultaneous Engineering of Thermal and Electrical Transport Properties Through S and Te co-doping

IF 2.5 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahwish Khan, Hongchao Wang, Chunlei Wang
{"title":"Enhanced Thermoelectric Performance of Cu2Se Alloys by Simultaneous Engineering of Thermal and Electrical Transport Properties Through S and Te co-doping","authors":"Mahwish Khan, Hongchao Wang, Chunlei Wang","doi":"10.1002/pssr.202400016","DOIUrl":null,"url":null,"abstract":"Cu<sub>2</sub>Se based binary compounds has recently fetched the attention of researchers due to their remarkable electrical and extremely low thermal properties. Besides, Cu<sub>2</sub>Se based quaternary chalcogenides were expected to present exceptional thermoelectric performance. Cu<sub>2</sub>Se<sub>1-x-y</sub>S<sub>x</sub>Te<sub>y</sub> like compounds are synthesized via microwave assisted hydrothermal method and their respective thermal and electrical transport properties are studied in this research work. The phase purity and homogeneity were examined by X-Ray diffraction and EDS analysis. The introduction of S and Te elements into Cu<sub>2</sub>Se matrix enhance Seebeck coefficient resulting in improved electrical performance illustrating a maximum power factor of 989.4 <i>μ</i>WK<sup>-2</sup>m<sup>-1</sup> at 673 K. Furthermore, S, Te co-doped samples exhibit reduced total thermal conductivity values with lowest value of 0.808 WK<sup>-1</sup>m<sup>-1</sup> for Cu<sub>2</sub>Se<sub>0.96</sub>S<sub>0.02</sub>Te<sub>0.02</sub> sample in comparison to 1.18 WK<sup>-1</sup>m<sup>-1</sup> for the pristine sample. The simultaneous improvement in electrical and thermal properties results in enhanced figure of merit of 0.82 for Cu<sub>2</sub>Se<sub>0.96</sub>S<sub>0.02</sub>Te<sub>0.02</sub> sample at 673 K.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"242 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400016","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cu2Se based binary compounds has recently fetched the attention of researchers due to their remarkable electrical and extremely low thermal properties. Besides, Cu2Se based quaternary chalcogenides were expected to present exceptional thermoelectric performance. Cu2Se1-x-ySxTey like compounds are synthesized via microwave assisted hydrothermal method and their respective thermal and electrical transport properties are studied in this research work. The phase purity and homogeneity were examined by X-Ray diffraction and EDS analysis. The introduction of S and Te elements into Cu2Se matrix enhance Seebeck coefficient resulting in improved electrical performance illustrating a maximum power factor of 989.4 μWK-2m-1 at 673 K. Furthermore, S, Te co-doped samples exhibit reduced total thermal conductivity values with lowest value of 0.808 WK-1m-1 for Cu2Se0.96S0.02Te0.02 sample in comparison to 1.18 WK-1m-1 for the pristine sample. The simultaneous improvement in electrical and thermal properties results in enhanced figure of merit of 0.82 for Cu2Se0.96S0.02Te0.02 sample at 673 K.
通过共掺杂 S 和 Te 同时改善 Cu2Se 合金的热电和电传输性能
基于 Cu2Se 的二元化合物最近引起了研究人员的注意,因为它们具有显著的电气性能和极低的热性能。此外,以 Cu2Se 为基础的四元钙钛矿有望呈现出卓越的热电性能。本研究通过微波辅助水热法合成了 Cu2Se1-x-ySxTey 类化合物,并研究了它们各自的热和电传输特性。通过 X 射线衍射和 EDS 分析检验了相的纯度和均匀性。此外,S、Te 共掺杂样品还降低了总热导率值,Cu2Se0.96S0.02Te0.02 样品的最低值为 0.808 WK-1m-1,而原始样品的最低值为 1.18 WK-1m-1。电学和热学特性的同时改善使 Cu2Se0.96S0.02Te0.02 样品在 673 K 时的优点系数提高到 0.82。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica Status Solidi-Rapid Research Letters
Physica Status Solidi-Rapid Research Letters 物理-材料科学:综合
CiteScore
5.20
自引率
3.60%
发文量
208
审稿时长
1.4 months
期刊介绍: Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers. The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信