Virasoro constraints for moduli of sheaves and vertex algebras

IF 2.6 1区 数学 Q1 MATHEMATICS
Arkadij Bojko, Woonam Lim, Miguel Moreira
{"title":"Virasoro constraints for moduli of sheaves and vertex algebras","authors":"Arkadij Bojko, Woonam Lim, Miguel Moreira","doi":"10.1007/s00222-024-01245-5","DOIUrl":null,"url":null,"abstract":"<p>In enumerative geometry, Virasoro constraints were first conjectured in Gromov-Witten theory with many new recent developments in the sheaf theoretic context. In this paper, we rephrase the sheaf theoretic Virasoro constraints in terms of primary states coming from a natural conformal vector in Joyce’s vertex algebra. This shows that Virasoro constraints are preserved under wall-crossing. As an application, we prove the conjectural Virasoro constraints for moduli spaces of torsion-free sheaves on any curve and on surfaces with only <span>\\((p,p)\\)</span> cohomology classes by reducing the statements to the rank 1 case.</p>","PeriodicalId":14429,"journal":{"name":"Inventiones mathematicae","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inventiones mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01245-5","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In enumerative geometry, Virasoro constraints were first conjectured in Gromov-Witten theory with many new recent developments in the sheaf theoretic context. In this paper, we rephrase the sheaf theoretic Virasoro constraints in terms of primary states coming from a natural conformal vector in Joyce’s vertex algebra. This shows that Virasoro constraints are preserved under wall-crossing. As an application, we prove the conjectural Virasoro constraints for moduli spaces of torsion-free sheaves on any curve and on surfaces with only \((p,p)\) cohomology classes by reducing the statements to the rank 1 case.

Abstract Image

剪子和顶点代数模数的维拉索罗约束
在枚举几何中,维拉索罗约束最早是在格罗莫夫-维滕理论中猜想出来的,最近在舍弗勒理论中又有了许多新的发展。在本文中,我们用来自乔伊斯顶点代数中自然共形向量的主态来重新表述剪子理论的维拉索罗约束。这表明维拉索罗约束在壁交条件下是保留的。作为应用,我们通过把陈述简化为秩1的情况,证明了在任何曲线上和仅有((p,p))同调类的曲面上的无扭剪切的模空间的猜想维拉索罗约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inventiones mathematicae
Inventiones mathematicae 数学-数学
CiteScore
5.60
自引率
3.20%
发文量
76
审稿时长
12 months
期刊介绍: This journal is published at frequent intervals to bring out new contributions to mathematics. It is a policy of the journal to publish papers within four months of acceptance. Once a paper is accepted it goes immediately into production and no changes can be made by the author(s).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信