A singular growth phenomenon in a Keller–Segel–type parabolic system involving density-suppressed motilities

Pub Date : 2024-02-23 DOI:10.1002/mana.202300361
Yulan Wang, Michael Winkler
{"title":"A singular growth phenomenon in a Keller–Segel–type parabolic system involving density-suppressed motilities","authors":"Yulan Wang,&nbsp;Michael Winkler","doi":"10.1002/mana.202300361","DOIUrl":null,"url":null,"abstract":"<p>A no-flux initial-boundary value problem for\n\n </p><p>Under the assumption that <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>&gt;</mo>\n <mfrac>\n <mi>n</mi>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </mfrac>\n </mrow>\n <annotation>$\\alpha &amp;gt;\\frac{n}{n-2}$</annotation>\n </semantics></math>, it is shown that for each <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$m&amp;gt;0$</annotation>\n </semantics></math>, there exist <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$T&amp;gt;0$</annotation>\n </semantics></math> and a positive <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>v</mi>\n <mn>0</mn>\n </msub>\n <mo>∈</mo>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$v_0\\in W^{1,\\infty }(\\Omega)$</annotation>\n </semantics></math> with the property that whenever <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <mo>∈</mo>\n <msup>\n <mi>W</mi>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>∞</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$u_0\\in W^{1,\\infty }(\\Omega)$</annotation>\n </semantics></math> is nonnegative with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mo>∫</mo>\n <mi>Ω</mi>\n </msub>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <mo>=</mo>\n <mi>m</mi>\n </mrow>\n <annotation>$\\int _\\Omega u_0=m$</annotation>\n </semantics></math>, the global solutions to (<span></span><math>\n <semantics>\n <mi>★</mi>\n <annotation>$\\star$</annotation>\n </semantics></math>) emanating from the initial data <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>u</mi>\n <mn>0</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>v</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <annotation>$(u_0,v_0)$</annotation>\n </semantics></math> have the property that\n\n </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.202300361","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A no-flux initial-boundary value problem for

Under the assumption that α > n n 2 $\alpha &gt;\frac{n}{n-2}$ , it is shown that for each m > 0 $m&gt;0$ , there exist T > 0 $T&gt;0$ and a positive v 0 W 1 , ( Ω ) $v_0\in W^{1,\infty }(\Omega)$ with the property that whenever u 0 W 1 , ( Ω ) $u_0\in W^{1,\infty }(\Omega)$ is nonnegative with Ω u 0 = m $\int _\Omega u_0=m$ , the global solutions to ( $\star$ ) emanating from the initial data ( u 0 , v 0 ) $(u_0,v_0)$ have the property that

分享
查看原文
涉及密度抑制运动的凯勒-西格尔型抛物线系统中的奇异增长现象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信