Total positivity and high relative accuracy for several classes of Hankel matrices

IF 1.8 3区 数学 Q1 MATHEMATICS
E. Mainar, J.M. Peña, B. Rubio
{"title":"Total positivity and high relative accuracy for several classes of Hankel matrices","authors":"E. Mainar, J.M. Peña, B. Rubio","doi":"10.1002/nla.2550","DOIUrl":null,"url":null,"abstract":"SummaryGramian matrices with respect to inner products defined for Hilbert spaces supported on bounded and unbounded intervals are represented through a bidiagonal factorization. It is proved that the considered matrices are strictly totally positive Hankel matrices and their catalecticant determinants are also calculated. Using the proposed representation, the numerical resolution of linear algebra problems with these matrices can be achieved to high relative accuracy. Numerical experiments are provided, and they illustrate the excellent results obtained when applying the theoretical results.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":"52 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryGramian matrices with respect to inner products defined for Hilbert spaces supported on bounded and unbounded intervals are represented through a bidiagonal factorization. It is proved that the considered matrices are strictly totally positive Hankel matrices and their catalecticant determinants are also calculated. Using the proposed representation, the numerical resolution of linear algebra problems with these matrices can be achieved to high relative accuracy. Numerical experiments are provided, and they illustrate the excellent results obtained when applying the theoretical results.
几类汉克尔矩阵的全正性和高相对精度
摘要 通过双对角因式分解来表示支持有界和无界区间的希尔伯特空间的关于内积的格拉米矩阵。证明了所考虑的矩阵是严格完全正的汉克尔矩阵,并计算了它们的梓行列式。利用所提出的表示方法,这些矩阵的线性代数问题的数值求解可以达到很高的相对精度。我们还提供了数值实验,这些实验说明了在应用理论结果时所获得的出色结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信