{"title":"Fabrication of biomimetic anisotropic crescent-shaped microstructured surfaces by laser shock imprinting","authors":"Jie Ji, Kangnan Meng, Pin Li, Zongbao Shen","doi":"10.2478/msp-2023-0039","DOIUrl":null,"url":null,"abstract":"The crescent-shaped microstructure bionic to the slip zone of the slippery zone of the carnivorous plant genus <jats:italic>Nepenthes</jats:italic> was fabricated on the surface of copper foil by laser shock imprinting (LSI). The microstructure of crescent-shaped grooves was initially fabricated on the surface of the micro-mold by etching, and then the microstructure was replicated on the surface of copper foil through plastic deformation under laser shock loading. Increasing the laser shock energy or the number of shocks can increase the degree of replication of the crescent-shaped microstructure, the height of the crescent-shaped microstructure, and the contact angle of water droplets on the surface. The wettability of the surface of the crescent microstructure is anisotropic and increases with an increase in offset distance. The anisotropy of the crescent-shaped microstructure causes the solid–liquid contact line in the direction of the bottom of the arc to become a long and approximately straight line. According to the rule that controlling LSI processing parameters can fabricate surfaces with different heights and wettability, a gradient wetting surface consisting of crescent-shaped microstructures was designed to achieve the directional spreading of droplets. By altering the distribution of crescent-shaped microstructures, a type-I flow channel with the ability to limit the spreading range of water droplets was fabricated.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"142 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/msp-2023-0039","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The crescent-shaped microstructure bionic to the slip zone of the slippery zone of the carnivorous plant genus Nepenthes was fabricated on the surface of copper foil by laser shock imprinting (LSI). The microstructure of crescent-shaped grooves was initially fabricated on the surface of the micro-mold by etching, and then the microstructure was replicated on the surface of copper foil through plastic deformation under laser shock loading. Increasing the laser shock energy or the number of shocks can increase the degree of replication of the crescent-shaped microstructure, the height of the crescent-shaped microstructure, and the contact angle of water droplets on the surface. The wettability of the surface of the crescent microstructure is anisotropic and increases with an increase in offset distance. The anisotropy of the crescent-shaped microstructure causes the solid–liquid contact line in the direction of the bottom of the arc to become a long and approximately straight line. According to the rule that controlling LSI processing parameters can fabricate surfaces with different heights and wettability, a gradient wetting surface consisting of crescent-shaped microstructures was designed to achieve the directional spreading of droplets. By altering the distribution of crescent-shaped microstructures, a type-I flow channel with the ability to limit the spreading range of water droplets was fabricated.
通过激光冲击压印(LSI)技术,在铜箔表面制造出了仿生多肉植物尼泊金(Nepenthes)滑动区的新月形微结构。首先通过蚀刻在微模具表面形成新月形凹槽的微观结构,然后在激光冲击加载下通过塑性变形将微观结构复制到铜箔表面。增加激光冲击能量或冲击次数可提高新月形微结构的复制程度、新月形微结构的高度以及表面水滴的接触角。新月形微结构表面的润湿性是各向异性的,随着偏移距离的增加而增加。月牙形微观结构的各向异性导致圆弧底部方向上的固液接触线成为一条近似直线的长线。根据控制 LSI 加工参数可以制造出不同高度和润湿性表面的规律,我们设计了一种由月牙形微结构组成的梯度润湿表面,以实现液滴的定向扩散。通过改变新月形微结构的分布,制造出了一种能够限制水滴扩散范围的 I 型流道。
期刊介绍:
Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.