Why are some students “not into” computational thinking activities embedded within high school science units? Key takeaways from a microethnographic discourse analysis study
{"title":"Why are some students “not into” computational thinking activities embedded within high school science units? Key takeaways from a microethnographic discourse analysis study","authors":"Umit Aslan, Michael Horn, Uri Wilensky","doi":"10.1002/sce.21850","DOIUrl":null,"url":null,"abstract":"<p>Science educators are integrating more and more computational thinking (CT) activities into their curricula. Proponents of CT offer two motivations: familiarizing students with a realistic depiction of the computational nature of modern scientific practices and encouraging more students from underrepresented backgrounds to pursue careers in science, technology, engineering, and mathematics. However, some studies show that increasing exposure to computing may not necessarily translate to the hypothesized gains in participation by female students and students of color. Therefore, paying close attention to students' engagement in computationally intense science activities is important to finding more impactful ways to promote equitable science education. In this paper, we present an in-depth analysis of the interactions among a small, racially diverse group of high school students during a chemistry unit with tightly integrated CT activities. We find a salient interaction between the students' engagement with the CT activities and their social identification with publicly recognizable categories such as “enjoys coding” or “finds computing boring.” We show that CT activities in science education can lead to numerous rich interactions that could, if leveraged correctly, allow educators to facilitate more inclusive science classrooms. However, we also show that such opportunities would be missed unless teachers are attentive to them. We discuss the implications of our findings on future work to integrate CT across science curricula and teacher education.</p>","PeriodicalId":771,"journal":{"name":"Science & Education","volume":"108 3","pages":"929-956"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sce.21850","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sce.21850","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Science educators are integrating more and more computational thinking (CT) activities into their curricula. Proponents of CT offer two motivations: familiarizing students with a realistic depiction of the computational nature of modern scientific practices and encouraging more students from underrepresented backgrounds to pursue careers in science, technology, engineering, and mathematics. However, some studies show that increasing exposure to computing may not necessarily translate to the hypothesized gains in participation by female students and students of color. Therefore, paying close attention to students' engagement in computationally intense science activities is important to finding more impactful ways to promote equitable science education. In this paper, we present an in-depth analysis of the interactions among a small, racially diverse group of high school students during a chemistry unit with tightly integrated CT activities. We find a salient interaction between the students' engagement with the CT activities and their social identification with publicly recognizable categories such as “enjoys coding” or “finds computing boring.” We show that CT activities in science education can lead to numerous rich interactions that could, if leveraged correctly, allow educators to facilitate more inclusive science classrooms. However, we also show that such opportunities would be missed unless teachers are attentive to them. We discuss the implications of our findings on future work to integrate CT across science curricula and teacher education.
期刊介绍:
Science Education publishes original articles on the latest issues and trends occurring internationally in science curriculum, instruction, learning, policy and preparation of science teachers with the aim to advance our knowledge of science education theory and practice. In addition to original articles, the journal features the following special sections: -Learning : consisting of theoretical and empirical research studies on learning of science. We invite manuscripts that investigate learning and its change and growth from various lenses, including psychological, social, cognitive, sociohistorical, and affective. Studies examining the relationship of learning to teaching, the science knowledge and practices, the learners themselves, and the contexts (social, political, physical, ideological, institutional, epistemological, and cultural) are similarly welcome. -Issues and Trends : consisting primarily of analytical, interpretive, or persuasive essays on current educational, social, or philosophical issues and trends relevant to the teaching of science. This special section particularly seeks to promote informed dialogues about current issues in science education, and carefully reasoned papers representing disparate viewpoints are welcomed. Manuscripts submitted for this section may be in the form of a position paper, a polemical piece, or a creative commentary. -Science Learning in Everyday Life : consisting of analytical, interpretative, or philosophical papers regarding learning science outside of the formal classroom. Papers should investigate experiences in settings such as community, home, the Internet, after school settings, museums, and other opportunities that develop science interest, knowledge or practices across the life span. Attention to issues and factors relating to equity in science learning are especially encouraged.. -Science Teacher Education [...]