Robust inverse scattering analysis of discrete high-order nonlinear Schrödinger equation

Xue-Wei Yan, Yong Chen, Xin Wu
{"title":"Robust inverse scattering analysis of discrete high-order nonlinear Schrödinger equation","authors":"Xue-Wei Yan, Yong Chen, Xin Wu","doi":"10.1515/zna-2023-0295","DOIUrl":null,"url":null,"abstract":"In this study, we present the rigorous theory of the robust inverse scattering method for the discrete high-order nonlinear Schrödinger (HNLS) equation with a nonzero boundary condition (NZBC). Using the direct scattering problem, we deduce the analyticity, symmetries, and asymptotic behaviors of the Jost solutions and scattering matrix. We also formulate the inverse scattering problem using the matrix Riemann–Hilbert problem (RHP). Furthermore, utilizing the loop group theory, we construct the multi-fold Darboux transformation (DT) within the framework of the robust inverse scattering transform. Additionally, we develop the corresponding Bäcklund transformation (BT) to obtain the multi-fold lattice soliton solutions. To derive the high-order rational solutions, we further construct the high-order DT. Finally, we theoretically and graphically analyze these solutions, which exhibit lattice breather waves, W-shape lattice solitons, high-order lattice rogue waves (RW), and their interactions.","PeriodicalId":23871,"journal":{"name":"Zeitschrift für Naturforschung A","volume":"214 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift für Naturforschung A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/zna-2023-0295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we present the rigorous theory of the robust inverse scattering method for the discrete high-order nonlinear Schrödinger (HNLS) equation with a nonzero boundary condition (NZBC). Using the direct scattering problem, we deduce the analyticity, symmetries, and asymptotic behaviors of the Jost solutions and scattering matrix. We also formulate the inverse scattering problem using the matrix Riemann–Hilbert problem (RHP). Furthermore, utilizing the loop group theory, we construct the multi-fold Darboux transformation (DT) within the framework of the robust inverse scattering transform. Additionally, we develop the corresponding Bäcklund transformation (BT) to obtain the multi-fold lattice soliton solutions. To derive the high-order rational solutions, we further construct the high-order DT. Finally, we theoretically and graphically analyze these solutions, which exhibit lattice breather waves, W-shape lattice solitons, high-order lattice rogue waves (RW), and their interactions.
离散高阶非线性薛定谔方程的稳健反散射分析
在本研究中,我们提出了针对具有非零边界条件(NZBC)的离散高阶非线性薛定谔(HNLS)方程的鲁棒逆散射方法的严格理论。利用直接散射问题,我们推导出了约斯特解和散射矩阵的解析性、对称性和渐近行为。我们还利用矩阵黎曼-希尔伯特问题(RHP)提出了反向散射问题。此外,我们还利用环群理论,在鲁棒逆散射变换的框架内构建了多重达布变换(DT)。此外,我们还开发了相应的贝克伦德变换(BT),以获得多阶晶格孤子解。为了得出高阶有理解,我们进一步构建了高阶 DT。最后,我们从理论和图形上分析了这些解,它们表现出晶格呼吸波、W 形晶格孤子、高阶晶格流氓波(RW)以及它们之间的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信