Farmers’ adoption of multiple climate-smart agricultural technologies in Ghana: determinants and impacts on maize yields and net farm income

IF 2.5 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
{"title":"Farmers’ adoption of multiple climate-smart agricultural technologies in Ghana: determinants and impacts on maize yields and net farm income","authors":"","doi":"10.1007/s11027-024-10114-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This study investigates the factors affecting maize farmers’ decisions to adopt climate-smart agricultural (CSA) technologies and estimates the impacts of CSA technology adoption on maize yields and net farm income. Unlike most previous studies that analyze a single technology, we consider different combinations of three CSA technologies (zero tillage, row planting, and drought-resistant seed). A multinomial endogenous switching regression model addresses selection bias issues arising from observed and unobserved factors and analyses data collected from 3197 smallholder farmers in three Ghana regions (Brong-Ahafo, Northern, and Ashanti). The findings show that smallholder farmers’ decisions to adopt multiple CSA technologies are influenced by farmer-based organization membership, education, resource constraints such as lack of land, access to markets, and production shocks such as perceived pest and disease stress and drought. We also find that adopting all three CSA technologies together has the largest impact on maize yields, while adopting row planting and zero tillage as a combination has the largest impact on net farm income. Governments should collaborate with farmer-based groups and extension officers to improve farmers’ awareness and understanding of the benefits associated with CSA technologies and help them adopt multiple technologies that generate higher benefits.</p>","PeriodicalId":54387,"journal":{"name":"Mitigation and Adaptation Strategies for Global Change","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitigation and Adaptation Strategies for Global Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11027-024-10114-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the factors affecting maize farmers’ decisions to adopt climate-smart agricultural (CSA) technologies and estimates the impacts of CSA technology adoption on maize yields and net farm income. Unlike most previous studies that analyze a single technology, we consider different combinations of three CSA technologies (zero tillage, row planting, and drought-resistant seed). A multinomial endogenous switching regression model addresses selection bias issues arising from observed and unobserved factors and analyses data collected from 3197 smallholder farmers in three Ghana regions (Brong-Ahafo, Northern, and Ashanti). The findings show that smallholder farmers’ decisions to adopt multiple CSA technologies are influenced by farmer-based organization membership, education, resource constraints such as lack of land, access to markets, and production shocks such as perceived pest and disease stress and drought. We also find that adopting all three CSA technologies together has the largest impact on maize yields, while adopting row planting and zero tillage as a combination has the largest impact on net farm income. Governments should collaborate with farmer-based groups and extension officers to improve farmers’ awareness and understanding of the benefits associated with CSA technologies and help them adopt multiple technologies that generate higher benefits.

加纳农民采用多种气候智能型农业技术:决定因素及其对玉米产量和农业净收入的影响
摘要 本研究调查了影响玉米种植农决定采用气候智能型农业(CSA)技术的因素,并估算了采用 CSA 技术对玉米产量和农业净收入的影响。与以往分析单一技术的大多数研究不同,我们考虑了三种 CSA 技术(零耕作、行种植和抗旱种子)的不同组合。多项式内生转换回归模型解决了观察到的和未观察到的因素引起的选择偏差问题,并分析了从加纳三个地区(布隆阿哈福、北部和阿散蒂)3197 名小农收集的数据。研究结果表明,小农采用多种 CSA 技术的决定受到农民组织成员资格、教育程度、资源限制(如缺乏土地)、市场准入以及生产冲击(如感知到的病虫害压力和干旱)的影响。我们还发现,同时采用所有三种 CSA 技术对玉米产量的影响最大,而同时采用行种植和零耕地技术对农业净收入的影响最大。政府应与农民团体和推广人员合作,提高农民对 CSA 技术相关益处的认识和理解,帮助他们采用能产生更高收益的多种技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
50
审稿时长
3 months
期刊介绍: The Earth''s biosphere is being transformed by various anthropogenic activities. Mitigation and Adaptation Strategies for Global Change addresses a wide range of environment, economic and energy topics and timely issues including global climate change, stratospheric ozone depletion, acid deposition, eutrophication of terrestrial and aquatic ecosystems, species extinction and loss of biological diversity, deforestation and forest degradation, desertification, soil resource degradation, land-use change, sea level rise, destruction of coastal zones, depletion of fresh water and marine fisheries, loss of wetlands and riparian zones and hazardous waste management. Response options to mitigate these threats or to adapt to changing environs are needed to ensure a sustainable biosphere for all forms of life. To that end, Mitigation and Adaptation Strategies for Global Change provides a forum to encourage the conceptualization, critical examination and debate regarding response options. The aim of this journal is to provide a forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales. One of the primary goals of this journal is to contribute to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信