Spatial–temporal characterization of photoemission in a streak-mode dynamic transmission electron microscope

Samik Roy Moulik, Yingming Lai, Aida Amini, Patrick Soucy, Kenneth R. Beyerlein, Jinyang Liang
{"title":"Spatial–temporal characterization of photoemission in a streak-mode dynamic transmission electron microscope","authors":"Samik Roy Moulik, Yingming Lai, Aida Amini, Patrick Soucy, Kenneth R. Beyerlein, Jinyang Liang","doi":"10.1063/4.0000219","DOIUrl":null,"url":null,"abstract":"A long-standing motivation driving high-speed electron microscopy development is to capture phase transformations and material dynamics in real time with high spatial and temporal resolution. Current dynamic transmission electron microscopes (DTEMs) are limited to nanosecond temporal resolution and the ability to capture only a few frames of a transient event. With the motivation to overcome these limitations, we present our progress in developing a streak-mode DTEM (SM-DTEM) and demonstrate the recovery of picosecond images with high frame sequence depth. We first demonstrate that a zero-dimensional (0D) SM-DTEM can provide temporal information on any local region of interest with a 0.37 μm diameter, a 20-GHz sampling rate, and 1200 data points in the recorded trace. We use this method to characterize the temporal profile of the photoemitted electron pulse, finding that it deviates from the incident ultraviolet laser pulse and contains an unexpected peak near its onset. Then, we demonstrate a two-dimensional (2D) SM-DTEM, which uses compressed-sensing-based tomographic imaging to recover a full spatiotemporal photoemission profile over a 1.85-μm-diameter field of view with nanoscale spatial resolution, 370-ps inter-frame interval, and 140-frame sequence depth in a 50-ns time window. Finally, a perspective is given on the instrumental modifications necessary to further develop this promising technique with the goal of decreasing the time to capture a 2D SM-DTEM dataset.","PeriodicalId":21992,"journal":{"name":"Structural Dynamics","volume":"289 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/4.0000219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A long-standing motivation driving high-speed electron microscopy development is to capture phase transformations and material dynamics in real time with high spatial and temporal resolution. Current dynamic transmission electron microscopes (DTEMs) are limited to nanosecond temporal resolution and the ability to capture only a few frames of a transient event. With the motivation to overcome these limitations, we present our progress in developing a streak-mode DTEM (SM-DTEM) and demonstrate the recovery of picosecond images with high frame sequence depth. We first demonstrate that a zero-dimensional (0D) SM-DTEM can provide temporal information on any local region of interest with a 0.37 μm diameter, a 20-GHz sampling rate, and 1200 data points in the recorded trace. We use this method to characterize the temporal profile of the photoemitted electron pulse, finding that it deviates from the incident ultraviolet laser pulse and contains an unexpected peak near its onset. Then, we demonstrate a two-dimensional (2D) SM-DTEM, which uses compressed-sensing-based tomographic imaging to recover a full spatiotemporal photoemission profile over a 1.85-μm-diameter field of view with nanoscale spatial resolution, 370-ps inter-frame interval, and 140-frame sequence depth in a 50-ns time window. Finally, a perspective is given on the instrumental modifications necessary to further develop this promising technique with the goal of decreasing the time to capture a 2D SM-DTEM dataset.
条纹模式动态透射电子显微镜中光发射的时空特性分析
推动高速电子显微镜发展的一个长期动力是以高空间和时间分辨率实时捕捉相变和材料动态。目前的动态透射电子显微镜(DTEM)仅限于纳秒级的时间分辨率,而且只能捕捉瞬态事件的几帧图像。为了克服这些限制,我们介绍了在开发条纹模式 DTEM(SM-DTEM)方面取得的进展,并展示了具有高帧序深度的皮秒图像复原。我们首先证明,零维 (0D) SM-DTEM 可以提供任何感兴趣局部区域的时间信息,其直径为 0.37 μm,采样率为 20-GHz,记录轨迹中有 1200 个数据点。我们用这种方法描述了光发射电子脉冲的时间轮廓,发现它偏离了入射紫外激光脉冲,并在其起始点附近包含了一个意想不到的峰值。然后,我们展示了一种二维(2D)SM-DTEM,它使用基于压缩传感的层析成像技术,以纳米级的空间分辨率、370ps 的帧间间隔和 140 帧的序列深度,在 50-ns 的时间窗口内恢复出直径为 1.85μm 的视场中的完整时空光发射轮廓。最后,还介绍了进一步开发这项前景广阔的技术所需的仪器改装,目的是缩短捕获二维 SM-DTEM 数据集的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信