Short-maturity asymptotics for option prices with interest rates effects

Dan Pirjol, Lingjiong Zhu
{"title":"Short-maturity asymptotics for option prices with interest rates effects","authors":"Dan Pirjol, Lingjiong Zhu","doi":"arxiv-2402.14161","DOIUrl":null,"url":null,"abstract":"We derive the short-maturity asymptotics for option prices in the local\nvolatility model in a new short-maturity limit $T\\to 0$ at fixed $\\rho = (r-q)\nT$, where $r$ is the interest rate and $q$ is the dividend yield. In cases of\npractical relevance $\\rho$ is small, however our result holds for any fixed\n$\\rho$. The result is a generalization of the Berestycki-Busca-Florent formula\nfor the short-maturity asymptotics of the implied volatility which includes\ninterest rates and dividend yield effects of $O(((r-q) T)^n)$ to all orders in\n$n$. We obtain analytical results for the ATM volatility and skew in this\nasymptotic limit. Explicit results are derived for the CEV model. The\nasymptotic result is tested numerically against exact evaluation in the\nsquare-root model model $\\sigma(S)=\\sigma/\\sqrt{S}$, which demonstrates that\nthe new asymptotic result is in very good agreement with exact evaluation in a\nwide range of model parameters relevant for practical applications.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.14161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We derive the short-maturity asymptotics for option prices in the local volatility model in a new short-maturity limit $T\to 0$ at fixed $\rho = (r-q) T$, where $r$ is the interest rate and $q$ is the dividend yield. In cases of practical relevance $\rho$ is small, however our result holds for any fixed $\rho$. The result is a generalization of the Berestycki-Busca-Florent formula for the short-maturity asymptotics of the implied volatility which includes interest rates and dividend yield effects of $O(((r-q) T)^n)$ to all orders in $n$. We obtain analytical results for the ATM volatility and skew in this asymptotic limit. Explicit results are derived for the CEV model. The asymptotic result is tested numerically against exact evaluation in the square-root model model $\sigma(S)=\sigma/\sqrt{S}$, which demonstrates that the new asymptotic result is in very good agreement with exact evaluation in a wide range of model parameters relevant for practical applications.
具有利率效应的期权价格的短期到期渐近线
我们推导了本地波动率模型中期权价格在固定的 $\rho = (r-q)T$ 时新的短期期限极限 $T\to 0$ 的短期期限渐近线,其中 $r$ 是利率,$q$ 是股息率。在实际情况中,$rho$很小,但我们的结果对任何固定的$rho$都成立。该结果是贝里斯基-布斯卡-弗洛伦特公式对隐含波动率短期到期渐近公式的概括,它包括利率和股息率对$O(((r-q) T)^n)$到$n$的所有阶数的影响。我们得到了 ATM 波动率和倾斜度在这一渐近极限中的分析结果。我们还得出了 CEV 模型的显式结果。在方根模型模型$\sigma(S)=\sigma/\sqrt{S}$中,对渐近结果与精确评估进行了数值检验,结果表明,在与实际应用相关的广泛模型参数中,新的渐近结果与精确评估非常一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信