Zhengshuai Du, Le Cai, Yingjie Chen, Songtao Wang, Hongfei Tang, Jun Zeng
{"title":"Investigation of non-axisymmetric endwall contouring in a high loaded turbine stator cascade","authors":"Zhengshuai Du, Le Cai, Yingjie Chen, Songtao Wang, Hongfei Tang, Jun Zeng","doi":"10.1177/09576509241235977","DOIUrl":null,"url":null,"abstract":"The intensity and structure of the secondary flows have significant influences on the turbine cascade losses. Combining with the extension method of Non-linear Programming by Quadratic Lagrangian (NLPQLP), two endwall parametric methods respectively based on the B-spline surface and Fourier series are used to optimize the aerodynamic losses of a turbine cascade. The optimization processes are based on Computational Fluid Dynamics (CFD) analysis and two final designs are obtained by different methods. The endwall profile generated by the B-spline surface method (EW-B1) appears to relatively reduce the total pressure loss by 16.58% and the secondary kinetic energy coefficient ( C<jats:sub> SKE</jats:sub>) by 27.08%, while the endwall profile generated by the Fourier series method (EW-F1) relatively reduces the loss by 16.18% but increases C<jats:sub> SKE</jats:sub> by 8.99%. The radial movement of upper Passage Vortex (PV) and the weakening of the pressure branch of the Horseshoe Vortex (HV<jats:sub>ps</jats:sub>) are confirmed to be the reasons of loss reduction in EW-B1, while the movement of PV is the main reason for EW-F1 to decrease the total pressure loss. In EW-B1, the weakening of HV<jats:sub>ps</jats:sub> has a much more significant effect on the decrease in loss, which is affected by the non-axisymmetric shapes upstream of the vortex trajectory and the drop in C<jats:sub> SKE</jats:sub> generation near the throat.","PeriodicalId":20705,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","volume":"2017 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09576509241235977","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intensity and structure of the secondary flows have significant influences on the turbine cascade losses. Combining with the extension method of Non-linear Programming by Quadratic Lagrangian (NLPQLP), two endwall parametric methods respectively based on the B-spline surface and Fourier series are used to optimize the aerodynamic losses of a turbine cascade. The optimization processes are based on Computational Fluid Dynamics (CFD) analysis and two final designs are obtained by different methods. The endwall profile generated by the B-spline surface method (EW-B1) appears to relatively reduce the total pressure loss by 16.58% and the secondary kinetic energy coefficient ( C SKE) by 27.08%, while the endwall profile generated by the Fourier series method (EW-F1) relatively reduces the loss by 16.18% but increases C SKE by 8.99%. The radial movement of upper Passage Vortex (PV) and the weakening of the pressure branch of the Horseshoe Vortex (HVps) are confirmed to be the reasons of loss reduction in EW-B1, while the movement of PV is the main reason for EW-F1 to decrease the total pressure loss. In EW-B1, the weakening of HVps has a much more significant effect on the decrease in loss, which is affected by the non-axisymmetric shapes upstream of the vortex trajectory and the drop in C SKE generation near the throat.
期刊介绍:
The Journal of Power and Energy, Part A of the Proceedings of the Institution of Mechanical Engineers, is dedicated to publishing peer-reviewed papers of high scientific quality on all aspects of the technology of energy conversion systems.