Hao Yan, Tengzhou Xie, Fei Wang, Yishan Zeng, Jiaqiu Ai
{"title":"Effect of biomimetic fish scale structure on the drag reduction performance of Clark-Y hydrofoil","authors":"Hao Yan, Tengzhou Xie, Fei Wang, Yishan Zeng, Jiaqiu Ai","doi":"10.1177/14750902241228153","DOIUrl":null,"url":null,"abstract":"A hydrofoil is a basic shape of fluid machinery blades, and its drag reduction performance is an important reference index in the field of fluid transportation. When fluid flows around a hydrofoil, it generates friction drag and pressure drag, greatly reducing the hydrofoil’s hydraulic performance. This study designs a bionic drag reduction structure by arranging fish scales on a Clark-Y hydrofoil. The overlapping size, thickness, and coverage area of fish scales are taken as design parameters, and the optimal design scheme is attained by using the Taguchi method. Large eddy simulation is used to numerically simulate various schemes. Results show that when the overlapping size O is 2.00 mm, the thickness h is 0.36 mm, the initial position x/C of the fish scale covering is 0 (where C is the chord length of the hydrofoil), and the hydrofoil exhibits excellent drag reduction performance. The total drag reduction rate of the hydrofoil is up to 35.15%, and the drag reduction rate of friction drag and pressure drag is up to 39.56% and 25.64%, respectively. The lift–drag ratio of the hydrofoil increases by 18.04%. The bionic fish scale structure effectively inhibits turbulence, thereby reducing the drag caused by the transformation of laminar flow to turbulence.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241228153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A hydrofoil is a basic shape of fluid machinery blades, and its drag reduction performance is an important reference index in the field of fluid transportation. When fluid flows around a hydrofoil, it generates friction drag and pressure drag, greatly reducing the hydrofoil’s hydraulic performance. This study designs a bionic drag reduction structure by arranging fish scales on a Clark-Y hydrofoil. The overlapping size, thickness, and coverage area of fish scales are taken as design parameters, and the optimal design scheme is attained by using the Taguchi method. Large eddy simulation is used to numerically simulate various schemes. Results show that when the overlapping size O is 2.00 mm, the thickness h is 0.36 mm, the initial position x/C of the fish scale covering is 0 (where C is the chord length of the hydrofoil), and the hydrofoil exhibits excellent drag reduction performance. The total drag reduction rate of the hydrofoil is up to 35.15%, and the drag reduction rate of friction drag and pressure drag is up to 39.56% and 25.64%, respectively. The lift–drag ratio of the hydrofoil increases by 18.04%. The bionic fish scale structure effectively inhibits turbulence, thereby reducing the drag caused by the transformation of laminar flow to turbulence.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.