{"title":"An analytical vibration model of a one-dimensional two-stage periodic isolation system for the broadband vibration suppression of an underwater glider","authors":"Yujun Liu, Jing Liu, Guang Pan, Qiaogao Huang","doi":"10.1177/14750902241230351","DOIUrl":null,"url":null,"abstract":"Periodic isolation system is effectively applied in broadband vibration control. To further enhance the broadband vibration attenuation effect, the paper proposes a two-stage periodic isolation system for an underwater glider. The analytical model of the one-dimensional two-stage periodic isolation system is developed through the multi-degree of freedom spring mass model method. For illustrating the superiority of the proposed two-stage periodic isolator, the force transmission ratio and the wave propagation constant of the SDOF isolator, the single-stage periodic isolator, and the two-stage periodic isolator are calculated and compared. In order to obtain the dynamic parameter influences on the vibration isolation performances as the design guidelines of the two-stage periodic isolator, the parametrical study is carried out based on the analytical model. Furthermore, a two-stage periodic isolator is designed for an underwater glider. The application effect of the two-stage periodic isolator is investigated through analytical modeling and finite element method, comparing to the single-stage periodic isolator. The research results from the analytical models show the proposed two-stage periodic isolator could strength the broadband vibration suppression. The parametrical study results demonstrate the vibration attenuation bandgap and attenuation amount are greatly influenced by the designed dynamic parameters, such as the mass unit and the spring unit of the periodic isolator, the intermediate mass of the two-stage isolator, and the number of the periodic cells. In application study of an underwater glider, the finite element results verify that the two-stage periodic isolator has more vibration attenuation effect than the single-stage periodic isolator. The vibration isolation assessment according to the proposed analytical model gives good predictive performance before the finite element model verification.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241230351","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Periodic isolation system is effectively applied in broadband vibration control. To further enhance the broadband vibration attenuation effect, the paper proposes a two-stage periodic isolation system for an underwater glider. The analytical model of the one-dimensional two-stage periodic isolation system is developed through the multi-degree of freedom spring mass model method. For illustrating the superiority of the proposed two-stage periodic isolator, the force transmission ratio and the wave propagation constant of the SDOF isolator, the single-stage periodic isolator, and the two-stage periodic isolator are calculated and compared. In order to obtain the dynamic parameter influences on the vibration isolation performances as the design guidelines of the two-stage periodic isolator, the parametrical study is carried out based on the analytical model. Furthermore, a two-stage periodic isolator is designed for an underwater glider. The application effect of the two-stage periodic isolator is investigated through analytical modeling and finite element method, comparing to the single-stage periodic isolator. The research results from the analytical models show the proposed two-stage periodic isolator could strength the broadband vibration suppression. The parametrical study results demonstrate the vibration attenuation bandgap and attenuation amount are greatly influenced by the designed dynamic parameters, such as the mass unit and the spring unit of the periodic isolator, the intermediate mass of the two-stage isolator, and the number of the periodic cells. In application study of an underwater glider, the finite element results verify that the two-stage periodic isolator has more vibration attenuation effect than the single-stage periodic isolator. The vibration isolation assessment according to the proposed analytical model gives good predictive performance before the finite element model verification.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.