Modeling and controlling of ship general section attitude adjustment process based on RBF neural network coupled with sliding mode algorithm

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Honggen Zhou, Chaojie Bao, Bo Deng, Lei Li
{"title":"Modeling and controlling of ship general section attitude adjustment process based on RBF neural network coupled with sliding mode algorithm","authors":"Honggen Zhou, Chaojie Bao, Bo Deng, Lei Li","doi":"10.1177/14750902241227301","DOIUrl":null,"url":null,"abstract":"Due to the advantages such as high efficiency, high precision, and the ability to reduce welding distortion, the block assembly method in shipbuilding possesses currently holds a dominant position in shipbuilding engineering. However, some key issues including low adjustment precision and slow control response speed urgently need to be resolved for the block assembly adjustment technology. This paper committed to solving the problems of inaccurate tracking of target displacement and slow control response speed in the vertical motion axis of the ship block joining equipment. A docking equipment control method based on the RBF neural network coupled with adaptive sliding mode algorithm was proposed. Firstly, an overview of the overall mechanics and control architecture of the ship block joining equipment was provided. Subsequently, a mathematical model for the transmission at the lifting mechanism was established. A sliding mode controller based on position control for the ship block joining equipment was designed for the transmission system. Then, the RBF neural network was employed to adjust the switching gain of the sliding mode controller and develop a self-adaptive sliding mode controller. Finally, simulations and verifications were conducted for multiple sets of input trajectories with different types. The results demonstrated that the combination of the neural network algorithm and the sliding mode control algorithm model presented in this paper reduces the system response time by 28.125% and improves the average motion tracking accuracy by 30.76%.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902241227301","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the advantages such as high efficiency, high precision, and the ability to reduce welding distortion, the block assembly method in shipbuilding possesses currently holds a dominant position in shipbuilding engineering. However, some key issues including low adjustment precision and slow control response speed urgently need to be resolved for the block assembly adjustment technology. This paper committed to solving the problems of inaccurate tracking of target displacement and slow control response speed in the vertical motion axis of the ship block joining equipment. A docking equipment control method based on the RBF neural network coupled with adaptive sliding mode algorithm was proposed. Firstly, an overview of the overall mechanics and control architecture of the ship block joining equipment was provided. Subsequently, a mathematical model for the transmission at the lifting mechanism was established. A sliding mode controller based on position control for the ship block joining equipment was designed for the transmission system. Then, the RBF neural network was employed to adjust the switching gain of the sliding mode controller and develop a self-adaptive sliding mode controller. Finally, simulations and verifications were conducted for multiple sets of input trajectories with different types. The results demonstrated that the combination of the neural network algorithm and the sliding mode control algorithm model presented in this paper reduces the system response time by 28.125% and improves the average motion tracking accuracy by 30.76%.
基于 RBF 神经网络和滑模算法的船舶总段姿态调整过程建模与控制
由于具有效率高、精度高、可减少焊接变形等优点,造船中的分块装配方法目前在造船工程中占据主导地位。然而,分块装配调整技术存在调整精度低、控制响应速度慢等亟待解决的关键问题。本文致力于解决船体拼装设备垂直运动轴目标位移跟踪不准确和控制响应速度慢的问题。提出了一种基于 RBF 神经网络和自适应滑模算法的船坞设备控制方法。首先,概述了船块连接设备的整体力学和控制结构。随后,建立了升降机构传动的数学模型。为传动系统设计了基于船体连接设备位置控制的滑动模式控制器。然后,采用 RBF 神经网络调节滑动模式控制器的开关增益,开发出一种自适应滑动模式控制器。最后,对多组不同类型的输入轨迹进行了模拟和验证。结果表明,本文提出的神经网络算法与滑动模式控制算法模型相结合,系统响应时间缩短了 28.125%,平均运动跟踪精度提高了 30.76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信