Permawound Unipotent Groups

Pub Date : 2024-02-23 DOI:10.1007/s00031-024-09846-3
Zev Rosengarten
{"title":"Permawound Unipotent Groups","authors":"Zev Rosengarten","doi":"10.1007/s00031-024-09846-3","DOIUrl":null,"url":null,"abstract":"<p>We introduce the class of permawound unipotent groups, and show that they simultaneously satisfy certain “ubiquity” and “rigidity” properties that in combination render them very useful in the study of general wound unipotent groups. As an illustration of their utility, we present two applications: We prove that nonsplit smooth unipotent groups over (infinite) fields finitely generated over <span>\\(\\textbf{F}_p\\)</span> have infinite first cohomology; and we show that every commutative <i>p</i>-torsion wound unipotent group over a field of degree of imperfection 1 is the maximal unipotent quotient of a commutative pseudo-reductive group, thus partially answering a question of Totaro.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09846-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the class of permawound unipotent groups, and show that they simultaneously satisfy certain “ubiquity” and “rigidity” properties that in combination render them very useful in the study of general wound unipotent groups. As an illustration of their utility, we present two applications: We prove that nonsplit smooth unipotent groups over (infinite) fields finitely generated over \(\textbf{F}_p\) have infinite first cohomology; and we show that every commutative p-torsion wound unipotent group over a field of degree of imperfection 1 is the maximal unipotent quotient of a commutative pseudo-reductive group, thus partially answering a question of Totaro.

分享
查看原文
永磁单能组
我们介绍了永绕单能群,并证明它们同时满足某些 "无处不在 "和 "刚性 "的特性,这些特性的结合使它们在研究一般永绕单能群时非常有用。为了说明它们的作用,我们介绍了两个应用:我们证明了在 \(\textbf{F}_p\) 上有限生成的(无限)域上的非分裂光滑单能群具有无限的第一同调;我们还证明了在不完善度为 1 的域上的每个交换 p-torsion 周期单能群都是交换伪还原群的最大单能商,从而部分地回答了托塔罗的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信