Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie Zhan, Hongsheng Li
{"title":"Measuring Multimodal Mathematical Reasoning with MATH-Vision Dataset","authors":"Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie Zhan, Hongsheng Li","doi":"arxiv-2402.14804","DOIUrl":null,"url":null,"abstract":"Recent advancements in Large Multimodal Models (LMMs) have shown promising\nresults in mathematical reasoning within visual contexts, with models\napproaching human-level performance on existing benchmarks such as MathVista.\nHowever, we observe significant limitations in the diversity of questions and\nbreadth of subjects covered by these benchmarks. To address this issue, we\npresent the MATH-Vision (MATH-V) dataset, a meticulously curated collection of\n3,040 high-quality mathematical problems with visual contexts sourced from real\nmath competitions. Spanning 16 distinct mathematical disciplines and graded\nacross 5 levels of difficulty, our dataset provides a comprehensive and diverse\nset of challenges for evaluating the mathematical reasoning abilities of LMMs.\nThrough extensive experimentation, we unveil a notable performance gap between\ncurrent LMMs and human performance on MATH-V, underscoring the imperative for\nfurther advancements in LMMs. Moreover, our detailed categorization allows for\na thorough error analysis of LMMs, offering valuable insights to guide future\nresearch and development. The project is available at\nhttps://mathvision-cuhk.github.io","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.14804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advancements in Large Multimodal Models (LMMs) have shown promising results in mathematical reasoning within visual contexts, with models approaching human-level performance on existing benchmarks such as MathVista. However, we observe significant limitations in the diversity of questions and breadth of subjects covered by these benchmarks. To address this issue, we present the MATH-Vision (MATH-V) dataset, a meticulously curated collection of 3,040 high-quality mathematical problems with visual contexts sourced from real math competitions. Spanning 16 distinct mathematical disciplines and graded across 5 levels of difficulty, our dataset provides a comprehensive and diverse set of challenges for evaluating the mathematical reasoning abilities of LMMs. Through extensive experimentation, we unveil a notable performance gap between current LMMs and human performance on MATH-V, underscoring the imperative for further advancements in LMMs. Moreover, our detailed categorization allows for a thorough error analysis of LMMs, offering valuable insights to guide future research and development. The project is available at https://mathvision-cuhk.github.io
用 MATH-Vision 数据集衡量多模态数学推理能力
大型多模态模型(LMM)的最新进展表明,在视觉语境下进行数学推理的结果很有希望,模型在现有基准(如 MathVista)上的表现已接近人类水平。为了解决这个问题,我们提出了 MATH-Vision (MATH-V)数据集,这是一个经过精心策划的集合,包含 3040 个高质量的数学问题,这些问题的可视化背景来自数学竞赛。我们的数据集横跨 16 个不同的数学学科,分为 5 个难度等级,为评估 LMM 的数学推理能力提供了全面而多样化的挑战。通过广泛的实验,我们发现目前的 LMM 与人类在 MATH-V 上的表现存在明显差距,这凸显了进一步提高 LMM 的必要性。此外,我们还对 LMM 进行了详细分类,以便对其误差进行全面分析,为指导未来的研究和开发提供了宝贵的见解。该项目可在https://mathvision-cuhk.github.io
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信