Super-Exponential Convergence Rate of a Nonlinear Continuous Data Assimilation Algorithm: The 2D Navier–Stokes Equation Paradigm

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Elizabeth Carlson, Adam Larios, Edriss S. Titi
{"title":"Super-Exponential Convergence Rate of a Nonlinear Continuous Data Assimilation Algorithm: The 2D Navier–Stokes Equation Paradigm","authors":"Elizabeth Carlson, Adam Larios, Edriss S. Titi","doi":"10.1007/s00332-024-10014-w","DOIUrl":null,"url":null,"abstract":"<p>We study a nonlinear-nudging modification of the Azouani–Olson–Titi continuous data assimilation (downscaling) algorithm for the 2D incompressible Navier–Stokes equations. We give a rigorous proof that the nonlinear-nudging system is globally well posed and, moreover, that its solutions converge to the true solution exponentially fast in time. Furthermore, we also prove that once the error has decreased below a certain order one threshold, the convergence becomes double exponentially fast in time, up until a precision determined by the sparsity of the observed data. In addition, we demonstrate the applicability of the analytical and sharpness of the results computationally.\n</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"5 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10014-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study a nonlinear-nudging modification of the Azouani–Olson–Titi continuous data assimilation (downscaling) algorithm for the 2D incompressible Navier–Stokes equations. We give a rigorous proof that the nonlinear-nudging system is globally well posed and, moreover, that its solutions converge to the true solution exponentially fast in time. Furthermore, we also prove that once the error has decreased below a certain order one threshold, the convergence becomes double exponentially fast in time, up until a precision determined by the sparsity of the observed data. In addition, we demonstrate the applicability of the analytical and sharpness of the results computationally.

Abstract Image

非线性连续数据同化算法的超指数收敛率:二维纳维-斯托克斯方程范例
我们研究了针对二维不可压缩纳维-斯托克斯方程的 Azouani-Olson-Titi 连续数据同化(降尺度)算法的非线性推移修正。我们给出了一个严格的证明,即非线性推移系统是全局条件良好的,而且其解在时间上以指数速度收敛到真解。此外,我们还证明,一旦误差减小到某一阶阈值以下,收敛速度就会变成双倍指数速度,直到由观测数据稀疏程度决定的精度为止。此外,我们还通过计算证明了分析结果的适用性和尖锐性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信