Optimization of concentration parameters for maximizing bacteriophage recovery value using response surface methodology: A case study on determining the optimal concentration parameters for Erwinia amylovoraEA1T1.B3 phage
{"title":"Optimization of concentration parameters for maximizing bacteriophage recovery value using response surface methodology: A case study on determining the optimal concentration parameters for Erwinia amylovoraEA1T1.B3 phage","authors":"Kubra Guven, Esra Ekiz, Eylul Evran, Emine Kubra Tayyarcan, Ismail Hakki Boyaci","doi":"10.1111/ppa.13882","DOIUrl":null,"url":null,"abstract":"Bacteriophages have emerged as effective antimicrobial agents in combating pathogenic bacteria. To successfully apply phages in real‐life scenarios, it is crucial to optimize their large‐scale production, concentration and purification processes. In this study, our objective was to optimize the phage concentration parameters with a high recovery rate within a shorter time and minimum chemical consumption. We isolated and characterized a specific <jats:italic>Erwinia amylovora</jats:italic> phage. Subsequently, we employed response surface methodology (RSM) combined with a three‐factor central composite design to optimize the phage recovery. The factors considered were polyethylene glycol (PEG) concentration, NaCl concentration and incubation time. The optimized values for PEG, NaCl and incubation time, which resulted in a maximum recovery rate of 85.37%, were determined as 18%, 2.38 M and 0 h, respectively. This finding indicates that the concentration step, which traditionally took up to 18 h with a recovery rate of 65%, can now be accomplished in a significantly shorter time with an improved recovery rate. Our study demonstrates the effectiveness of RSM to identify the optimum conditions for phage precipitation. This approach allows for the rapid and efficient design of precipitation protocols tailored to specific bacteriophages, resulting in shorter processing times and higher recovery rates.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"59 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13882","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteriophages have emerged as effective antimicrobial agents in combating pathogenic bacteria. To successfully apply phages in real‐life scenarios, it is crucial to optimize their large‐scale production, concentration and purification processes. In this study, our objective was to optimize the phage concentration parameters with a high recovery rate within a shorter time and minimum chemical consumption. We isolated and characterized a specific Erwinia amylovora phage. Subsequently, we employed response surface methodology (RSM) combined with a three‐factor central composite design to optimize the phage recovery. The factors considered were polyethylene glycol (PEG) concentration, NaCl concentration and incubation time. The optimized values for PEG, NaCl and incubation time, which resulted in a maximum recovery rate of 85.37%, were determined as 18%, 2.38 M and 0 h, respectively. This finding indicates that the concentration step, which traditionally took up to 18 h with a recovery rate of 65%, can now be accomplished in a significantly shorter time with an improved recovery rate. Our study demonstrates the effectiveness of RSM to identify the optimum conditions for phage precipitation. This approach allows for the rapid and efficient design of precipitation protocols tailored to specific bacteriophages, resulting in shorter processing times and higher recovery rates.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.