Vibration control enhancement in a full vehicle dynamic model by optimization of the controller’s gain parameters

IF 1.5 4区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Leonardo Valero Pereira, Walter Jesus Paucar Casas, Herbert Martins Gomes, Luis Roberto Centeno Drehmer, Emanuel Moutinho Cesconeto
{"title":"Vibration control enhancement in a full vehicle dynamic model by optimization of the controller’s gain parameters","authors":"Leonardo Valero Pereira, Walter Jesus Paucar Casas, Herbert Martins Gomes, Luis Roberto Centeno Drehmer, Emanuel Moutinho Cesconeto","doi":"10.1108/ec-04-2023-0178","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p> In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road profile.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p> For a classically designed linear quadratic regulator (LQR) control, the vibration attenuation performance will depend on weighting matrices <strong>Q</strong> and <strong>R</strong>. A methodology is proposed in this work to determine the optimal elements of these matrices by using a genetic algorithm method to get enhanced controller performance. The active control is implemented in an eight degrees of freedom (8-DOF) vehicle suspension model, subjected to a standard ISO road profile. The control performance is compared against a controlled system with few <strong>Q</strong> and <strong>R</strong> parameters, an active system without optimized gain matrices, and an optimized passive system.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p> The control with 12 optimized parameters for <strong>Q</strong> and <strong>R</strong> provided the best vibration attenuation, reducing significantly the Root Mean Square (RMS) accelerations at the driver’s seat and car body.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p> The research has positive implications in a wide class of active control systems, especially those based on a LQR, which was verified by the multibody dynamic systems tested in the paper.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p> Better active control gains can be devised to improve performance in vibration attenuation.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p> The main contribution proposed in this work is the improvement of the <strong>Q</strong> and <strong>R</strong> parameters simultaneously, in a full 8-DOF vehicle model, which minimizes the driver’s seat acceleration and, at the same time, guarantees vehicle safety.</p><!--/ Abstract__block -->","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-04-2023-0178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

In this paper, improvements in reducing transmitted accelerations in a full vehicle are obtained by optimizing the gain parameters of an active control in a roughness road profile.

Design/methodology/approach

For a classically designed linear quadratic regulator (LQR) control, the vibration attenuation performance will depend on weighting matrices Q and R. A methodology is proposed in this work to determine the optimal elements of these matrices by using a genetic algorithm method to get enhanced controller performance. The active control is implemented in an eight degrees of freedom (8-DOF) vehicle suspension model, subjected to a standard ISO road profile. The control performance is compared against a controlled system with few Q and R parameters, an active system without optimized gain matrices, and an optimized passive system.

Findings

The control with 12 optimized parameters for Q and R provided the best vibration attenuation, reducing significantly the Root Mean Square (RMS) accelerations at the driver’s seat and car body.

Research limitations/implications

The research has positive implications in a wide class of active control systems, especially those based on a LQR, which was verified by the multibody dynamic systems tested in the paper.

Practical implications

Better active control gains can be devised to improve performance in vibration attenuation.

Originality/value

The main contribution proposed in this work is the improvement of the Q and R parameters simultaneously, in a full 8-DOF vehicle model, which minimizes the driver’s seat acceleration and, at the same time, guarantees vehicle safety.

通过优化控制器增益参数加强全车动态模型的振动控制
设计/方法/途径 对于经典设计的线性二次调节器(LQR)控制,振动衰减性能取决于加权矩阵 Q 和 R。本文提出了一种方法,利用遗传算法确定这些矩阵的最佳元素,以提高控制器性能。主动控制在一个八自由度(8-DOF)车辆悬架模型中实现,该模型受标准 ISO 道路轮廓的影响。研究结果 使用 12 个 Q 和 R 优化参数的控制器提供了最佳的振动衰减效果,显著降低了驾驶员座椅和车身的均方根加速度。研究局限性/意义 该研究对各类主动控制系统,尤其是基于 LQR 的系统具有积极意义,这一点已在论文中测试的多体动态系统中得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Computations
Engineering Computations 工程技术-工程:综合
CiteScore
3.40
自引率
6.20%
发文量
61
审稿时长
5 months
期刊介绍: The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice. For more information visit: http://www.emeraldgrouppublishing.com/ec.htm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信