Modal identification of non‐classically damped structures using generalized sparse component analysis

Xiao‐Jun Yao, Ting‐Hua Yi, Chun‐Xu Qu, Hong‐Nan Li
{"title":"Modal identification of non‐classically damped structures using generalized sparse component analysis","authors":"Xiao‐Jun Yao, Ting‐Hua Yi, Chun‐Xu Qu, Hong‐Nan Li","doi":"10.1002/tal.2101","DOIUrl":null,"url":null,"abstract":"SummaryModal identification method based on blind source separation (BSS) technique has gained extensive attentions for civil structures. Developing the complex modes estimation method is important in practical applications because the assumption of proportional damping is not always satisfied. Sparse component analysis (SCA) performs well in underdetermined BSS problems. However, SCA is confined to the situation of proportional damping. In this study, a generalized SCA method is proposed to extend the original SCA method to both real and complex modes identification. First, the general formulation of complex modes is extended by the analytic form to eliminate the complex conjugate part in the BSS model. A new single‐source‐point detection method that is available to handle real and complex modes is proposed. Local outlier factor method is adopted to remove the outliers in single source points. Subsequently, complex‐valued modal matrix is calculated by the clustering technique. Then, modal responses are recovered using the complex version of smoothed zero norm method, where modal frequencies and damping ratios can be extracted. Finally, the effectiveness of the proposed method is demonstrated for identification of real and complex modes, close modes, and underdetermined problem. The application to a benchmark structure demonstrates the effectiveness for practical applications.","PeriodicalId":501238,"journal":{"name":"The Structural Design of Tall and Special Buildings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Structural Design of Tall and Special Buildings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/tal.2101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryModal identification method based on blind source separation (BSS) technique has gained extensive attentions for civil structures. Developing the complex modes estimation method is important in practical applications because the assumption of proportional damping is not always satisfied. Sparse component analysis (SCA) performs well in underdetermined BSS problems. However, SCA is confined to the situation of proportional damping. In this study, a generalized SCA method is proposed to extend the original SCA method to both real and complex modes identification. First, the general formulation of complex modes is extended by the analytic form to eliminate the complex conjugate part in the BSS model. A new single‐source‐point detection method that is available to handle real and complex modes is proposed. Local outlier factor method is adopted to remove the outliers in single source points. Subsequently, complex‐valued modal matrix is calculated by the clustering technique. Then, modal responses are recovered using the complex version of smoothed zero norm method, where modal frequencies and damping ratios can be extracted. Finally, the effectiveness of the proposed method is demonstrated for identification of real and complex modes, close modes, and underdetermined problem. The application to a benchmark structure demonstrates the effectiveness for practical applications.
利用广义稀疏成分分析法识别非经典阻尼结构的模态
摘要基于盲源分离(BSS)技术的模态识别方法在民用结构中得到了广泛关注。在实际应用中,开发复杂模态估计方法非常重要,因为比例阻尼假设并非总能满足。稀疏成分分析(SCA)在未确定的 BSS 问题中表现出色。然而,SCA 仅限于比例阻尼情况。本研究提出了一种广义 SCA 方法,将原始 SCA 方法扩展到实模和复模识别。首先,通过解析形式扩展了复模态的一般表述,以消除 BSS 模型中的复共轭部分。提出了一种新的单源点检测方法,可用于处理实模和复模。采用局部离群因子法去除单源点中的离群值。随后,通过聚类技术计算复值模态矩阵。然后,使用复杂版本的平滑零规范法恢复模态响应,从而提取模态频率和阻尼比。最后,演示了所提方法在识别实模态和复模态、近似模态和欠定问题方面的有效性。对基准结构的应用证明了该方法在实际应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信