{"title":"Decentralized AI-Based Task Distribution on Blockchain for Cloud Industrial Internet of Things","authors":"Amir Javadpour, Arun Kumar Sangaiah, Weizhe Zhang, Ankit Vidyarthi, HamidReza Ahmadi","doi":"10.1007/s10723-024-09751-9","DOIUrl":null,"url":null,"abstract":"<p>This study presents an environmentally friendly mechanism for task distribution designed explicitly for blockchain Proof of Authority (POA) consensus. This approach facilitates the selection of virtual machines for tasks such as data processing, transaction verification, and adding new blocks to the blockchain. Given the current lack of effective methods for integrating POA blockchain into the Cloud Industrial Internet of Things (CIIoT) due to their inefficiency and low throughput, we propose a novel algorithm that employs the Dynamic Voltage and Frequency Scaling (DVFS) technique, replacing the periodic transaction authentication process among validator candidates. Managing computer power consumption becomes a critical concern, especially within the Internet of Things ecosystem, where device power is constrained, and transaction scalability is crucial. Virtual machines must validate transactions (tasks) within specific time frames and deadlines. The DVFS technique efficiently reduces power consumption by intelligently scheduling and allocating tasks to virtual machines. Furthermore, we leverage artificial intelligence and neural networks to match tasks with suitable virtual machines. The simulation results demonstrate that our proposed approach harnesses migration and DVFS strategies to optimize virtual machine utilization, resulting in decreased energy and power consumption compared to non-DVFS methods. This achievement marks a significant stride towards seamlessly integrating blockchain and IoT, establishing an ecologically sustainable network. Our approach boasts additional benefits, including decentralization, enhanced data quality, and heightened security. We analyze simulation runtime and energy consumption in a comprehensive evaluation against existing techniques such as WPEG, IRMBBC, and BEMEC. The findings underscore the efficiency of our technique (LBDVFSb) across both criteria.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09751-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an environmentally friendly mechanism for task distribution designed explicitly for blockchain Proof of Authority (POA) consensus. This approach facilitates the selection of virtual machines for tasks such as data processing, transaction verification, and adding new blocks to the blockchain. Given the current lack of effective methods for integrating POA blockchain into the Cloud Industrial Internet of Things (CIIoT) due to their inefficiency and low throughput, we propose a novel algorithm that employs the Dynamic Voltage and Frequency Scaling (DVFS) technique, replacing the periodic transaction authentication process among validator candidates. Managing computer power consumption becomes a critical concern, especially within the Internet of Things ecosystem, where device power is constrained, and transaction scalability is crucial. Virtual machines must validate transactions (tasks) within specific time frames and deadlines. The DVFS technique efficiently reduces power consumption by intelligently scheduling and allocating tasks to virtual machines. Furthermore, we leverage artificial intelligence and neural networks to match tasks with suitable virtual machines. The simulation results demonstrate that our proposed approach harnesses migration and DVFS strategies to optimize virtual machine utilization, resulting in decreased energy and power consumption compared to non-DVFS methods. This achievement marks a significant stride towards seamlessly integrating blockchain and IoT, establishing an ecologically sustainable network. Our approach boasts additional benefits, including decentralization, enhanced data quality, and heightened security. We analyze simulation runtime and energy consumption in a comprehensive evaluation against existing techniques such as WPEG, IRMBBC, and BEMEC. The findings underscore the efficiency of our technique (LBDVFSb) across both criteria.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.