Analysis of View Aliasing for the Generalized Radon Transform in [math]

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alexander Katsevich
{"title":"Analysis of View Aliasing for the Generalized Radon Transform in [math]","authors":"Alexander Katsevich","doi":"10.1137/23m1554746","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 415-440, March 2024. <br/> Abstract. In this paper we consider the generalized Radon transform [math] in the plane. Let [math] be a piecewise smooth function, which has a jump across a smooth curve [math]. We obtain a formula, which accurately describes view aliasing artifacts away from [math] when [math] is reconstructed from the data [math] discretized in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate [math]. The proposed approach does not require that [math] be band-limited. Numerical experiments with the classical Radon transform and generalized Radon transform (which integrates over circles) demonstrate the accuracy of the formula.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1554746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Imaging Sciences, Volume 17, Issue 1, Page 415-440, March 2024.
Abstract. In this paper we consider the generalized Radon transform [math] in the plane. Let [math] be a piecewise smooth function, which has a jump across a smooth curve [math]. We obtain a formula, which accurately describes view aliasing artifacts away from [math] when [math] is reconstructed from the data [math] discretized in the view direction. The formula is asymptotic, it is established in the limit as the sampling rate [math]. The proposed approach does not require that [math] be band-limited. Numerical experiments with the classical Radon transform and generalized Radon transform (which integrates over circles) demonstrate the accuracy of the formula.
数学]中广义拉顿变换的视差分析
SIAM 影像科学杂志》第 17 卷第 1 期第 415-440 页,2024 年 3 月。 摘要本文考虑平面内的广义 Radon 变换 [math]。设[math]是一个片断光滑函数,它在光滑曲线[math]上有一个跳跃。我们得到了一个公式,当[math]从视图方向离散的数据[math]重建时,它能准确描述远离[math]的视图混叠伪影。该公式是渐近公式,在采样率[math]的极限范围内成立。所提出的方法并不要求 [math] 具有频带限制。经典拉顿变换和广义拉顿变换(对圆进行积分)的数值实验证明了公式的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信