Cesàro means in local Dirichlet spaces

IF 0.5 4区 数学 Q3 MATHEMATICS
J. Mashreghi, M. Nasri, M. Withanachchi
{"title":"Cesàro means in local Dirichlet spaces","authors":"J. Mashreghi,&nbsp;M. Nasri,&nbsp;M. Withanachchi","doi":"10.1007/s00013-024-01967-1","DOIUrl":null,"url":null,"abstract":"<div><p>The Cesàro means of Taylor polynomials <span>\\(\\sigma _n,\\)</span> <span>\\(n \\ge 0,\\)</span> are finite rank operators on any Banach space of analytic functions on the open unit disc. They are particularly exploited when the Taylor polynomials do not constitute a valid linear polynomial approximation scheme (LPAS). Notably, in local Dirichlet spaces <span>\\({\\mathcal {D}}_\\zeta ,\\)</span> they serve as a proper LPAS. The primary objective of this note is to accurately determine the norm of <span>\\(\\sigma _n\\)</span> when it is considered as an operator on <span>\\({\\mathcal {D}}_\\zeta .\\)</span> There exist several practical methods to impose a norm on <span>\\({\\mathcal {D}}_\\zeta ,\\)</span> and each norm results in a distinct operator norm for <span>\\(\\sigma _n.\\)</span> In this context, we explore three different norms on <span>\\({\\mathcal {D}}_\\zeta \\)</span> and, for each norm, precisely compute the value of <span>\\(\\Vert \\sigma _n\\Vert _{{\\mathcal {D}}_\\zeta \\rightarrow {\\mathcal {D}}_\\zeta }.\\)</span> Furthermore, in all instances, we identify the maximizing functions and demonstrate their uniqueness.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01967-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Cesàro means of Taylor polynomials \(\sigma _n,\) \(n \ge 0,\) are finite rank operators on any Banach space of analytic functions on the open unit disc. They are particularly exploited when the Taylor polynomials do not constitute a valid linear polynomial approximation scheme (LPAS). Notably, in local Dirichlet spaces \({\mathcal {D}}_\zeta ,\) they serve as a proper LPAS. The primary objective of this note is to accurately determine the norm of \(\sigma _n\) when it is considered as an operator on \({\mathcal {D}}_\zeta .\) There exist several practical methods to impose a norm on \({\mathcal {D}}_\zeta ,\) and each norm results in a distinct operator norm for \(\sigma _n.\) In this context, we explore three different norms on \({\mathcal {D}}_\zeta \) and, for each norm, precisely compute the value of \(\Vert \sigma _n\Vert _{{\mathcal {D}}_\zeta \rightarrow {\mathcal {D}}_\zeta }.\) Furthermore, in all instances, we identify the maximizing functions and demonstrate their uniqueness.

局部 Dirichlet 空间中的 Cesàro 均值
泰勒多项式的 Cesàro means \(\sigma _n,\) \(n \ge 0,\) 是开放单位圆盘上解析函数的任意巴拿赫空间上的有限秩算子。当泰勒多项式不构成有效的线性多项式逼近方案(LPAS)时,它们就会被特别利用。值得注意的是,在局部德里赫特空间({\mathcal {D}}_\zeta ,\)中,它们可以作为适当的 LPAS。本论文的主要目的是准确地确定当 \(\sigma _n\) 被视为 \({\mathcal {D}}_\zeta .\) 上的一个算子时,它的(\sigma _n\) 准则。\在这种情况下,我们探索了关于({\mathcal {D}}_\zeta \)的三种不同的规范,并且对于每种规范,都精确地计算了(\Vert \sigma _n\Vert _{{\mathcal {D}}_\zeta \rightarrow\ {mathcal {D}}_\zeta }.\) 的值。)此外,在所有情况下,我们都确定了最大化函数,并证明了它们的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信