{"title":"Nonstandard proof methods in toposes","authors":"José Siqueira","doi":"10.1016/j.apal.2024.103424","DOIUrl":null,"url":null,"abstract":"<div><p>We determine sufficient structure for an elementary topos to emulate Nelson's Internal Set Theory in its internal language, and show that any topos satisfying the internal axiom of choice occurs as a universe of standard objects and maps. This development allows one to employ the proof methods of nonstandard analysis (transfer, standardisation, and idealisation) in new environments such as toposes of <em>G</em>-sets and Boolean étendues.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We determine sufficient structure for an elementary topos to emulate Nelson's Internal Set Theory in its internal language, and show that any topos satisfying the internal axiom of choice occurs as a universe of standard objects and maps. This development allows one to employ the proof methods of nonstandard analysis (transfer, standardisation, and idealisation) in new environments such as toposes of G-sets and Boolean étendues.