Negative Curvature Constricts the Fundamental Gap of Convex Domains

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Gabriel Khan, Xuan Hien Nguyen
{"title":"Negative Curvature Constricts the Fundamental Gap of Convex Domains","authors":"Gabriel Khan,&nbsp;Xuan Hien Nguyen","doi":"10.1007/s00023-024-01418-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Laplace–Beltrami operator with Dirichlet boundary conditions on convex domains in a Riemannian manifold <span>\\((M^n,g)\\)</span> and prove that the product of the fundamental gap with the square of the diameter can be arbitrarily small whenever <span>\\(M^n\\)</span> has even a single tangent plane of negative sectional curvature. In particular, the fundamental gap conjecture strongly fails for small deformations of Euclidean space which introduce any negative curvature. We also show that when the curvature is negatively pinched, it is possible to construct such domains of any diameter up to the diameter of the manifold. The proof is adapted from the argument of Bourni et al. (in: Annales Henri Poincaré, Springer, 2022), which established the analogous result for convex domains in hyperbolic space, but requires several new ingredients.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 11","pages":"4855 - 4887"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01418-1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Laplace–Beltrami operator with Dirichlet boundary conditions on convex domains in a Riemannian manifold \((M^n,g)\) and prove that the product of the fundamental gap with the square of the diameter can be arbitrarily small whenever \(M^n\) has even a single tangent plane of negative sectional curvature. In particular, the fundamental gap conjecture strongly fails for small deformations of Euclidean space which introduce any negative curvature. We also show that when the curvature is negatively pinched, it is possible to construct such domains of any diameter up to the diameter of the manifold. The proof is adapted from the argument of Bourni et al. (in: Annales Henri Poincaré, Springer, 2022), which established the analogous result for convex domains in hyperbolic space, but requires several new ingredients.

Abstract Image

负曲率限制了凸域的基本间隙
我们考虑了黎曼流形 \((M^n,g)\)中凸域上具有德里赫特边界条件的拉普拉斯-贝尔特拉米算子,并证明只要 \(M^n\)甚至有一个负截面曲率的切平面,基本间隙与直径平方的乘积就可以任意小。特别是,对于引入任何负曲率的欧几里得空间的小变形,基本间隙猜想都会严重失效。我们还证明,当曲率为负截面曲率时,有可能构造直径不超过流形直径的任意域。该证明改编自布尔尼等人的论证(见:《亨利-庞加莱年鉴》,施普林格出版社,2022 年),后者为双曲空间中的凸域建立了类似结果,但需要一些新的成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信