{"title":"Dissociation of composite Abrikosov vortices in two-band superconductors in a strong rf field","authors":"A. O. Pokusinskyi, A. L. Kasatkin","doi":"10.1063/10.0024321","DOIUrl":null,"url":null,"abstract":"In several theoretical works, it was argued that under certain conditions Abrikosov vortices in multiband superconductors can split and exist in the form of fractional vortices, formed separately in superfluid condensates of different electron bands. Such vortices possess a fractional flux quantum, and these fractional vortices attract each other, trying to join into a composite vortex with the whole flux quantum ϕ0=h/2e. In the present work, we solve numerically the nonlinear dynamic equation for the composite vortex, settled in the pinning potential well of the columnar defect within a two-band superconductor, and exerted the rf Lorentz force action. We demonstrate that at high enough rf current amplitudes such composite Abrikosov vortices will dissociate into fractional ones and escape from the pinning potential well. The sequence of these events depends on the character of the pinning potential well, e.g., the radius of the pinning potential well. The possible manifestation of such kind transitions in rf electrodynamic characteristics, such as a complex rf resistivity and harmonics generation is calculated.","PeriodicalId":18077,"journal":{"name":"Low Temperature Physics","volume":"4 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Low Temperature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/10.0024321","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In several theoretical works, it was argued that under certain conditions Abrikosov vortices in multiband superconductors can split and exist in the form of fractional vortices, formed separately in superfluid condensates of different electron bands. Such vortices possess a fractional flux quantum, and these fractional vortices attract each other, trying to join into a composite vortex with the whole flux quantum ϕ0=h/2e. In the present work, we solve numerically the nonlinear dynamic equation for the composite vortex, settled in the pinning potential well of the columnar defect within a two-band superconductor, and exerted the rf Lorentz force action. We demonstrate that at high enough rf current amplitudes such composite Abrikosov vortices will dissociate into fractional ones and escape from the pinning potential well. The sequence of these events depends on the character of the pinning potential well, e.g., the radius of the pinning potential well. The possible manifestation of such kind transitions in rf electrodynamic characteristics, such as a complex rf resistivity and harmonics generation is calculated.
期刊介绍:
Guided by an international editorial board, Low Temperature Physics (LTP) communicates the results of important experimental and theoretical studies conducted at low temperatures. LTP offers key work in such areas as superconductivity, magnetism, lattice dynamics, quantum liquids and crystals, cryocrystals, low-dimensional and disordered systems, electronic properties of normal metals and alloys, and critical phenomena. The journal publishes original articles on new experimental and theoretical results as well as review articles, brief communications, memoirs, and biographies.
Low Temperature Physics, a translation of the copyrighted Journal FIZIKA NIZKIKH TEMPERATUR, is a monthly journal containing English reports of current research in the field of the low temperature physics. The translation began with the 1975 issues. One volume is published annually beginning with the January issues.