Margaret Bayer, Mark Denker, Marija Jelić Milutinović, Rowan Rowlands, Sheila Sundaram, Lei Xue
{"title":"Total Cut Complexes of Graphs","authors":"Margaret Bayer, Mark Denker, Marija Jelić Milutinović, Rowan Rowlands, Sheila Sundaram, Lei Xue","doi":"10.1007/s00454-024-00630-4","DOIUrl":null,"url":null,"abstract":"<p>Inspired by work of Fröberg (1990), and Eagon and Reiner (1998), we define the <i>total k-cut complex</i> of a graph <i>G</i> to be the simplicial complex whose facets are the complements of independent sets of size <i>k</i> in <i>G</i>. We study the homotopy types and combinatorial properties of total cut complexes for various families of graphs, including chordal graphs, cycles, bipartite graphs, the prism <span>\\(K_n \\times K_2\\)</span>, and grid graphs, using techniques from algebraic topology and discrete Morse theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00630-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by work of Fröberg (1990), and Eagon and Reiner (1998), we define the total k-cut complex of a graph G to be the simplicial complex whose facets are the complements of independent sets of size k in G. We study the homotopy types and combinatorial properties of total cut complexes for various families of graphs, including chordal graphs, cycles, bipartite graphs, the prism \(K_n \times K_2\), and grid graphs, using techniques from algebraic topology and discrete Morse theory.
受 Fröberg (1990) 以及 Eagon 和 Reiner (1998) 工作的启发,我们将图 G 的总 k 切复合体定义为简单复合体,其切面是 G 中大小为 k 的独立集的补集。我们利用代数拓扑学和离散莫尔斯理论中的技术,研究了各种图系的全切复数的同调类型和组合性质,包括弦图、循环图、双分图、棱柱图(K_n \times K_2\)和网格图。