Total Cut Complexes of Graphs

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Margaret Bayer, Mark Denker, Marija Jelić Milutinović, Rowan Rowlands, Sheila Sundaram, Lei Xue
{"title":"Total Cut Complexes of Graphs","authors":"Margaret Bayer, Mark Denker, Marija Jelić Milutinović, Rowan Rowlands, Sheila Sundaram, Lei Xue","doi":"10.1007/s00454-024-00630-4","DOIUrl":null,"url":null,"abstract":"<p>Inspired by work of Fröberg (1990), and Eagon and Reiner (1998), we define the <i>total k-cut complex</i> of a graph <i>G</i> to be the simplicial complex whose facets are the complements of independent sets of size <i>k</i> in <i>G</i>. We study the homotopy types and combinatorial properties of total cut complexes for various families of graphs, including chordal graphs, cycles, bipartite graphs, the prism <span>\\(K_n \\times K_2\\)</span>, and grid graphs, using techniques from algebraic topology and discrete Morse theory.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"45 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00630-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by work of Fröberg (1990), and Eagon and Reiner (1998), we define the total k-cut complex of a graph G to be the simplicial complex whose facets are the complements of independent sets of size k in G. We study the homotopy types and combinatorial properties of total cut complexes for various families of graphs, including chordal graphs, cycles, bipartite graphs, the prism \(K_n \times K_2\), and grid graphs, using techniques from algebraic topology and discrete Morse theory.

Abstract Image

图形的总切复数
受 Fröberg (1990) 以及 Eagon 和 Reiner (1998) 工作的启发,我们将图 G 的总 k 切复合体定义为简单复合体,其切面是 G 中大小为 k 的独立集的补集。我们利用代数拓扑学和离散莫尔斯理论中的技术,研究了各种图系的全切复数的同调类型和组合性质,包括弦图、循环图、双分图、棱柱图(K_n \times K_2\)和网格图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信