Fine-tuning MobileNetV3 with different weight optimization algorithms for classification of denoised blood cell images using convolutional neural network
{"title":"Fine-tuning MobileNetV3 with different weight optimization algorithms for classification of denoised blood cell images using convolutional neural network","authors":"M. Mohana Dhas, N. Suresh Singh","doi":"10.1615/intjmultcompeng.2024051541","DOIUrl":null,"url":null,"abstract":"A novel method based on convolutional neural networks (CNNs) to denoise the blood cell images (BCI) is proposed in this paper. CNN is a kind of deep learning technique that specializes in retrieving information from input images instantly and capability to reduce the need for expert knowledge when extracting and selecting features. Hyper parameters like activation functions can have a direct impact on the model's performance in CNN. Hence this paper introduced a novel Improved Rectified Linear Units (I-ReLU)-CNNs approach for denoising the BCI images. In addition, the modified-ReLU and NRMSprop are the two techniques used to fine-tune the MobileNetV3 model. Then this fine-tuned MobileNetV3 model is applied for the feature extraction to remove the unwanted features from the original images. Then the Artificial Hummingbird Algorithm (AHA) based on the Manta Ray Foraging optimization algorithm (MRFOA) is proposed for feature selection. Moreover, this AHA-MRFOA is employed to ensure the development of the overall model classification by choosing only the most essential elements. The proposed model is evaluated based on the blood cell image dataset and achieves 97.86% classification accuracy.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2024051541","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel method based on convolutional neural networks (CNNs) to denoise the blood cell images (BCI) is proposed in this paper. CNN is a kind of deep learning technique that specializes in retrieving information from input images instantly and capability to reduce the need for expert knowledge when extracting and selecting features. Hyper parameters like activation functions can have a direct impact on the model's performance in CNN. Hence this paper introduced a novel Improved Rectified Linear Units (I-ReLU)-CNNs approach for denoising the BCI images. In addition, the modified-ReLU and NRMSprop are the two techniques used to fine-tune the MobileNetV3 model. Then this fine-tuned MobileNetV3 model is applied for the feature extraction to remove the unwanted features from the original images. Then the Artificial Hummingbird Algorithm (AHA) based on the Manta Ray Foraging optimization algorithm (MRFOA) is proposed for feature selection. Moreover, this AHA-MRFOA is employed to ensure the development of the overall model classification by choosing only the most essential elements. The proposed model is evaluated based on the blood cell image dataset and achieves 97.86% classification accuracy.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.