A Mastcam Multispectral Investigation of Rock Variability in Gale Crater, Mars: Implications for Alteration in the Clay-Sulfate Transition of Mount Sharp
A. M. Eng, M. S. Rice, W. H. Farrand, J. R. Johnson, S. Jacob, E. B. Rampe, L. Thompson, M. St. Clair, D. Applin, J. Bishop, E. Cloutis, M. Gabbert, J. Haber, K. Lapo, A. Rudolph, C. Seeger, R. Sheppard
{"title":"A Mastcam Multispectral Investigation of Rock Variability in Gale Crater, Mars: Implications for Alteration in the Clay-Sulfate Transition of Mount Sharp","authors":"A. M. Eng, M. S. Rice, W. H. Farrand, J. R. Johnson, S. Jacob, E. B. Rampe, L. Thompson, M. St. Clair, D. Applin, J. Bishop, E. Cloutis, M. Gabbert, J. Haber, K. Lapo, A. Rudolph, C. Seeger, R. Sheppard","doi":"10.1029/2023JE008033","DOIUrl":null,"url":null,"abstract":"<p>Since leaving Vera Rubin ridge (VRr), the Mars Science Laboratory <i>Curiosity</i> rover has traversed though the phyllosilicate-bearing region, Glen Torridon, and the overlying Mg-sulfate-bearing strata, with excursions onto the Greenheugh Pediment and Amapari Marker Band. Each of these distinct geologic units were investigated using <i>Curiosity</i>'s Mast Camera (Mastcam) multispectral instrument which is sensitive to iron-bearing phases and some hydrated minerals. We used Mastcam spectra, in combination with chemical data from Chemistry and Mineralogy, Alpha Particle X-ray Spectrometer, and Chemistry and Camera instruments, to assess the variability of rock spectra and interpret the mineralogy and diagenesis in the clay-sulfate transition and surrounding regions. We identify four new classes of rock spectra since leaving VRr; two are inherent to dusty and pyroxene-rich surfaces on the Amapari Marker Band; one is associated with the relatively young, basaltic, Greenheugh Pediment; and the last indicates areas subjected to intense aqueous alteration with an amorphous Fe-sulfate component, primarily in the clay-sulfate transition region. To constrain the Mg-sulfate detection capabilities of Mastcam and aid in the analyses of multispectral data, we also measured the spectral response of mixtures with phyllosilicates, hydrated Mg-sulfate, and basalt in the laboratory. We find that hydrated Mg-sulfates are easily masked by other materials, requiring ≥90 wt.% of hydrated Mg-sulfate to exhibit a hydration signature in Mastcam spectra, which places constraints on the abundance of hydrated Mg-sulfates along the traverse. Together, these results imply significant compositional changes along the traverse since leaving VRr, and they support the hypothesis of wet-dry cycles in the clay-sulfate transition.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023JE008033","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008033","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Since leaving Vera Rubin ridge (VRr), the Mars Science Laboratory Curiosity rover has traversed though the phyllosilicate-bearing region, Glen Torridon, and the overlying Mg-sulfate-bearing strata, with excursions onto the Greenheugh Pediment and Amapari Marker Band. Each of these distinct geologic units were investigated using Curiosity's Mast Camera (Mastcam) multispectral instrument which is sensitive to iron-bearing phases and some hydrated minerals. We used Mastcam spectra, in combination with chemical data from Chemistry and Mineralogy, Alpha Particle X-ray Spectrometer, and Chemistry and Camera instruments, to assess the variability of rock spectra and interpret the mineralogy and diagenesis in the clay-sulfate transition and surrounding regions. We identify four new classes of rock spectra since leaving VRr; two are inherent to dusty and pyroxene-rich surfaces on the Amapari Marker Band; one is associated with the relatively young, basaltic, Greenheugh Pediment; and the last indicates areas subjected to intense aqueous alteration with an amorphous Fe-sulfate component, primarily in the clay-sulfate transition region. To constrain the Mg-sulfate detection capabilities of Mastcam and aid in the analyses of multispectral data, we also measured the spectral response of mixtures with phyllosilicates, hydrated Mg-sulfate, and basalt in the laboratory. We find that hydrated Mg-sulfates are easily masked by other materials, requiring ≥90 wt.% of hydrated Mg-sulfate to exhibit a hydration signature in Mastcam spectra, which places constraints on the abundance of hydrated Mg-sulfates along the traverse. Together, these results imply significant compositional changes along the traverse since leaving VRr, and they support the hypothesis of wet-dry cycles in the clay-sulfate transition.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.