{"title":"Asymptotic decay of solutions for sublinear fractional Choquard equations","authors":"Marco Gallo","doi":"10.1016/j.na.2024.113515","DOIUrl":null,"url":null,"abstract":"<div><p>Goal of this paper is to study the asymptotic behaviour of the solutions of the following doubly nonlocal equation <span><span><span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><mi>u</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>∗</mo><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>on</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span></span></span>where <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>μ</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> denotes the Riesz potential and <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mi>d</mi><mi>τ</mi></mrow></math></span> is a general nonlinearity with a sublinear growth in the origin. The found decay is of polynomial type, with a rate possibly slower than <span><math><mrow><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>s</mi></mrow></msup></mrow></mfrac></mrow></math></span>. The result is new even for homogeneous functions <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>[</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, and it complements the decays obtained in the linear and superlinear cases in Cingolani et al. (2022); D’Avenia et al. (2015). Differently from the local case <span><math><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></math></span> in Moroz and Van Schaftingen (2013), new phenomena arise connected to a new “<span><math><mi>s</mi></math></span>-sublinear” threshold that we detect on the growth of <span><math><mi>f</mi></math></span>. To gain the result we in particular prove a Chain Rule type inequality in the fractional setting, suitable for concave powers.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24000348/pdfft?md5=d14fa534745d380d224b53616b67a72e&pid=1-s2.0-S0362546X24000348-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000348","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Goal of this paper is to study the asymptotic behaviour of the solutions of the following doubly nonlocal equation where , , , , denotes the Riesz potential and is a general nonlinearity with a sublinear growth in the origin. The found decay is of polynomial type, with a rate possibly slower than . The result is new even for homogeneous functions , , and it complements the decays obtained in the linear and superlinear cases in Cingolani et al. (2022); D’Avenia et al. (2015). Differently from the local case in Moroz and Van Schaftingen (2013), new phenomena arise connected to a new “-sublinear” threshold that we detect on the growth of . To gain the result we in particular prove a Chain Rule type inequality in the fractional setting, suitable for concave powers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.