Asymptotic decay of solutions for sublinear fractional Choquard equations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Marco Gallo
{"title":"Asymptotic decay of solutions for sublinear fractional Choquard equations","authors":"Marco Gallo","doi":"10.1016/j.na.2024.113515","DOIUrl":null,"url":null,"abstract":"<div><p>Goal of this paper is to study the asymptotic behaviour of the solutions of the following doubly nonlocal equation <span><span><span><math><mrow><msup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>s</mi></mrow></msup><mi>u</mi><mo>+</mo><mi>μ</mi><mi>u</mi><mo>=</mo><mrow><mo>(</mo><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>∗</mo><mi>F</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>)</mo></mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mtext>on</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span></span></span>where <span><math><mrow><mi>s</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mi>μ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><msub><mrow><mi>I</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> denotes the Riesz potential and <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><mi>f</mi><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mi>d</mi><mi>τ</mi></mrow></math></span> is a general nonlinearity with a sublinear growth in the origin. The found decay is of polynomial type, with a rate possibly slower than <span><math><mrow><mo>∼</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow></mrow><mrow><mi>N</mi><mo>+</mo><mn>2</mn><mi>s</mi></mrow></msup></mrow></mfrac></mrow></math></span>. The result is new even for homogeneous functions <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>r</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi></mrow></math></span>, <span><math><mrow><mi>r</mi><mo>∈</mo><mrow><mo>[</mo><mfrac><mrow><mi>N</mi><mo>+</mo><mi>α</mi></mrow><mrow><mi>N</mi></mrow></mfrac><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>, and it complements the decays obtained in the linear and superlinear cases in Cingolani et al. (2022); D’Avenia et al. (2015). Differently from the local case <span><math><mrow><mi>s</mi><mo>=</mo><mn>1</mn></mrow></math></span> in Moroz and Van Schaftingen (2013), new phenomena arise connected to a new “<span><math><mi>s</mi></math></span>-sublinear” threshold that we detect on the growth of <span><math><mi>f</mi></math></span>. To gain the result we in particular prove a Chain Rule type inequality in the fractional setting, suitable for concave powers.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24000348/pdfft?md5=d14fa534745d380d224b53616b67a72e&pid=1-s2.0-S0362546X24000348-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24000348","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Goal of this paper is to study the asymptotic behaviour of the solutions of the following doubly nonlocal equation (Δ)su+μu=(IαF(u))f(u)onRNwhere s(0,1), N2, α(0,N), μ>0, Iα denotes the Riesz potential and F(t)=0tf(τ)dτ is a general nonlinearity with a sublinear growth in the origin. The found decay is of polynomial type, with a rate possibly slower than 1|x|N+2s. The result is new even for homogeneous functions f(u)=|u|r2u, r[N+αN,2), and it complements the decays obtained in the linear and superlinear cases in Cingolani et al. (2022); D’Avenia et al. (2015). Differently from the local case s=1 in Moroz and Van Schaftingen (2013), new phenomena arise connected to a new “s-sublinear” threshold that we detect on the growth of f. To gain the result we in particular prove a Chain Rule type inequality in the fractional setting, suitable for concave powers.

亚线性分数 Choquard 方程解的渐近衰减
本文的目标是研究以下双非局部方程 (-Δ)su+μu=(Iα∗F(u))f(u)onRNwhere s∈(0,1), N≥2, α∈(0,N), μ>;0,Iα 表示里兹电势,F(t)=∫0tf(τ)dτ 是一个在原点有亚线性增长的一般非线性。所发现的衰减是多项式类型的,速率可能慢于 ∼1|x|N+2s。即使对于同质函数f(u)=|u|r-2u,r∈[N+αN,2),这一结果也是新的,它补充了Cingolani等人(2022年)和D'Avenia等人(2015年)在线性和超线性情况下获得的衰减。与 Moroz 和 Van Schaftingen (2013)中 s=1 的局部情况不同,新现象的出现与我们检测到的 f 增长的新 "s-次线性 "阈值有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信